Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the linear equation that represents a cost of [tex]$130 when renting a car from a company that charges $[/tex]0.50 per mile and a flat rate of [tex]$30.00, we can follow these steps:
1. Identify the components of the problem:
- The cost per mile is $[/tex]0.50.
- The flat rate is [tex]$30.00. - The total cost represents a combination of both the variable cost (based on miles driven, \(m\)) and the flat rate. - The total cost given is $[/tex]130.
2. Define the variables:
- Let [tex]\(m\)[/tex] represent the number of miles driven.
- Let [tex]\(C(m)\)[/tex] represent the total cost.
3. Set up the linear equation:
- The total cost [tex]\(C(m)\)[/tex] can be represented by the equation combining the flat rate and the mileage cost:
[tex]\[ C(m) = 0.50 \times m + 30 \][/tex]
4. Substitute the given total cost into the equation:
- We are given that the total cost is [tex]$130. Therefore, we can substitute $[/tex]130[tex]$ for \(C(m)\): \[ 130 = 0.50 \times m + 30 \] Thus, the linear equation that represents the total cost of $[/tex]130 when [tex]\(m\)[/tex] miles are driven is:
[tex]\[ 130 = 0.50 m + 30 \][/tex]
This matches the third option from the list:
[tex]\[ \boxed{130=0.50 m+30} \][/tex]
- The flat rate is [tex]$30.00. - The total cost represents a combination of both the variable cost (based on miles driven, \(m\)) and the flat rate. - The total cost given is $[/tex]130.
2. Define the variables:
- Let [tex]\(m\)[/tex] represent the number of miles driven.
- Let [tex]\(C(m)\)[/tex] represent the total cost.
3. Set up the linear equation:
- The total cost [tex]\(C(m)\)[/tex] can be represented by the equation combining the flat rate and the mileage cost:
[tex]\[ C(m) = 0.50 \times m + 30 \][/tex]
4. Substitute the given total cost into the equation:
- We are given that the total cost is [tex]$130. Therefore, we can substitute $[/tex]130[tex]$ for \(C(m)\): \[ 130 = 0.50 \times m + 30 \] Thus, the linear equation that represents the total cost of $[/tex]130 when [tex]\(m\)[/tex] miles are driven is:
[tex]\[ 130 = 0.50 m + 30 \][/tex]
This matches the third option from the list:
[tex]\[ \boxed{130=0.50 m+30} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.