Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To approximate the integral [tex]\(\int_1^9 \sqrt{1+x^2} \, dx\)[/tex] using Simpson's Rule with [tex]\(n = 4\)[/tex] intervals, we follow these steps:
1. Determine the interval width [tex]\(h\)[/tex]:
[tex]\[ h = \frac{b - a}{n} = \frac{9 - 1}{4} = 2 \][/tex]
2. Identify the function to be integrated:
[tex]\[ f(x) = \sqrt{1 + x^2} \][/tex]
3. Calculate the integral using Simpson's Rule (Simpson's Rule formula):
[tex]\[ S_n = \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1,3} f(a + ih) + 2 \sum_{i=2,4,...n-2} f(a + ih) \right] \][/tex]
4. Evaluate the function at the required points:
- For [tex]\(a = 1\)[/tex] and [tex]\(b = 9\)[/tex]:
[tex]\[ f(a) = f(1) = \sqrt{1 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ f(b) = f(9) = \sqrt{1 + 9^2} = \sqrt{82} \][/tex]
- At the odd intervals:
[tex]\[ f(1 + 2 \cdot 1) = f(3) = \sqrt{1 + 3^2} = \sqrt{10} \][/tex]
[tex]\[ f(1 + 2 \cdot 3) = f(7) = \sqrt{1 + 7^2} = \sqrt{50} \][/tex]
- At the even intervals:
[tex]\[ f(1 + 2 \cdot 2) = f(5) = \sqrt{1 + 5^2} = \sqrt{26} \][/tex]
5. Sum the function values for odd and even intervals:
[tex]\[ \sum_{i=1,3} f(a + ih) = f(3) + f(7) = \sqrt{10} + \sqrt{50} \][/tex]
[tex]\[ \sum_{i=2} f(a + ih) = f(5) = \sqrt{26} \][/tex]
6. Substitute these values back into Simpson's Rule formula:
[tex]\[ S_4 = \frac{2}{3} \left[\sqrt{2} + \sqrt{82} + 4(\sqrt{10} + \sqrt{50}) + 2(\sqrt{26})\right] \][/tex]
7. Calculate the numerical value:
[tex]\[ \sqrt{2} \approx 1.414, \quad \sqrt{82} \approx 9.055, \][/tex]
[tex]\[ \sqrt{10} \approx 3.162, \quad \sqrt{50} \approx 7.071, \][/tex]
[tex]\[ \sqrt{26} \approx 5.099 \][/tex]
Substitute these approximate values:
[tex]\[ S_4 = \frac{2}{3} \left[1.414 + 9.055 + 4(3.162 + 7.071) + 2(5.099)\right] \][/tex]
8. Perform the arithmetic operations inside the brackets:
[tex]\[ = \frac{2}{3} \left[10.469 + 4(10.233) + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[10.469 + 40.932 + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[61.599\right] \][/tex]
9. Final multiplication:
[tex]\[ S_4 \approx \frac{2}{3} \cdot 61.599 \approx 41.066 \][/tex]
10. Round the final answer to three decimal places:
[tex]\[ \approx 41.067 \][/tex]
Thus, the approximate value of the integral using Simpson's Rule is:
[tex]\[ \boxed{41.067} \][/tex]
1. Determine the interval width [tex]\(h\)[/tex]:
[tex]\[ h = \frac{b - a}{n} = \frac{9 - 1}{4} = 2 \][/tex]
2. Identify the function to be integrated:
[tex]\[ f(x) = \sqrt{1 + x^2} \][/tex]
3. Calculate the integral using Simpson's Rule (Simpson's Rule formula):
[tex]\[ S_n = \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1,3} f(a + ih) + 2 \sum_{i=2,4,...n-2} f(a + ih) \right] \][/tex]
4. Evaluate the function at the required points:
- For [tex]\(a = 1\)[/tex] and [tex]\(b = 9\)[/tex]:
[tex]\[ f(a) = f(1) = \sqrt{1 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ f(b) = f(9) = \sqrt{1 + 9^2} = \sqrt{82} \][/tex]
- At the odd intervals:
[tex]\[ f(1 + 2 \cdot 1) = f(3) = \sqrt{1 + 3^2} = \sqrt{10} \][/tex]
[tex]\[ f(1 + 2 \cdot 3) = f(7) = \sqrt{1 + 7^2} = \sqrt{50} \][/tex]
- At the even intervals:
[tex]\[ f(1 + 2 \cdot 2) = f(5) = \sqrt{1 + 5^2} = \sqrt{26} \][/tex]
5. Sum the function values for odd and even intervals:
[tex]\[ \sum_{i=1,3} f(a + ih) = f(3) + f(7) = \sqrt{10} + \sqrt{50} \][/tex]
[tex]\[ \sum_{i=2} f(a + ih) = f(5) = \sqrt{26} \][/tex]
6. Substitute these values back into Simpson's Rule formula:
[tex]\[ S_4 = \frac{2}{3} \left[\sqrt{2} + \sqrt{82} + 4(\sqrt{10} + \sqrt{50}) + 2(\sqrt{26})\right] \][/tex]
7. Calculate the numerical value:
[tex]\[ \sqrt{2} \approx 1.414, \quad \sqrt{82} \approx 9.055, \][/tex]
[tex]\[ \sqrt{10} \approx 3.162, \quad \sqrt{50} \approx 7.071, \][/tex]
[tex]\[ \sqrt{26} \approx 5.099 \][/tex]
Substitute these approximate values:
[tex]\[ S_4 = \frac{2}{3} \left[1.414 + 9.055 + 4(3.162 + 7.071) + 2(5.099)\right] \][/tex]
8. Perform the arithmetic operations inside the brackets:
[tex]\[ = \frac{2}{3} \left[10.469 + 4(10.233) + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[10.469 + 40.932 + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[61.599\right] \][/tex]
9. Final multiplication:
[tex]\[ S_4 \approx \frac{2}{3} \cdot 61.599 \approx 41.066 \][/tex]
10. Round the final answer to three decimal places:
[tex]\[ \approx 41.067 \][/tex]
Thus, the approximate value of the integral using Simpson's Rule is:
[tex]\[ \boxed{41.067} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.