Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Use Simpson's Rule with 4 intervals to approximate the following integral. Round your final answer to three decimal places.

[tex]\[
\int_1^9 \sqrt{1+x^2} \, dx
\][/tex]


Sagot :

To approximate the integral [tex]\(\int_1^9 \sqrt{1+x^2} \, dx\)[/tex] using Simpson's Rule with [tex]\(n = 4\)[/tex] intervals, we follow these steps:

1. Determine the interval width [tex]\(h\)[/tex]:
[tex]\[ h = \frac{b - a}{n} = \frac{9 - 1}{4} = 2 \][/tex]

2. Identify the function to be integrated:
[tex]\[ f(x) = \sqrt{1 + x^2} \][/tex]

3. Calculate the integral using Simpson's Rule (Simpson's Rule formula):
[tex]\[ S_n = \frac{h}{3} \left[f(a) + f(b) + 4 \sum_{i=1,3} f(a + ih) + 2 \sum_{i=2,4,...n-2} f(a + ih) \right] \][/tex]

4. Evaluate the function at the required points:
- For [tex]\(a = 1\)[/tex] and [tex]\(b = 9\)[/tex]:
[tex]\[ f(a) = f(1) = \sqrt{1 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ f(b) = f(9) = \sqrt{1 + 9^2} = \sqrt{82} \][/tex]

- At the odd intervals:
[tex]\[ f(1 + 2 \cdot 1) = f(3) = \sqrt{1 + 3^2} = \sqrt{10} \][/tex]
[tex]\[ f(1 + 2 \cdot 3) = f(7) = \sqrt{1 + 7^2} = \sqrt{50} \][/tex]

- At the even intervals:
[tex]\[ f(1 + 2 \cdot 2) = f(5) = \sqrt{1 + 5^2} = \sqrt{26} \][/tex]

5. Sum the function values for odd and even intervals:
[tex]\[ \sum_{i=1,3} f(a + ih) = f(3) + f(7) = \sqrt{10} + \sqrt{50} \][/tex]
[tex]\[ \sum_{i=2} f(a + ih) = f(5) = \sqrt{26} \][/tex]

6. Substitute these values back into Simpson's Rule formula:
[tex]\[ S_4 = \frac{2}{3} \left[\sqrt{2} + \sqrt{82} + 4(\sqrt{10} + \sqrt{50}) + 2(\sqrt{26})\right] \][/tex]

7. Calculate the numerical value:
[tex]\[ \sqrt{2} \approx 1.414, \quad \sqrt{82} \approx 9.055, \][/tex]
[tex]\[ \sqrt{10} \approx 3.162, \quad \sqrt{50} \approx 7.071, \][/tex]
[tex]\[ \sqrt{26} \approx 5.099 \][/tex]

Substitute these approximate values:
[tex]\[ S_4 = \frac{2}{3} \left[1.414 + 9.055 + 4(3.162 + 7.071) + 2(5.099)\right] \][/tex]

8. Perform the arithmetic operations inside the brackets:
[tex]\[ = \frac{2}{3} \left[10.469 + 4(10.233) + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[10.469 + 40.932 + 10.198\right] \][/tex]
[tex]\[ = \frac{2}{3} \left[61.599\right] \][/tex]

9. Final multiplication:
[tex]\[ S_4 \approx \frac{2}{3} \cdot 61.599 \approx 41.066 \][/tex]

10. Round the final answer to three decimal places:
[tex]\[ \approx 41.067 \][/tex]

Thus, the approximate value of the integral using Simpson's Rule is:
[tex]\[ \boxed{41.067} \][/tex]