Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the specific heat ([tex]\(C_p\)[/tex]) of copper, we can use the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat added (in Joules),
- [tex]\( m \)[/tex] is the mass of the substance (in grams),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in Celsius),
- [tex]\( C_p \)[/tex] is the specific heat (in J/g°C).
Let's go through this step-by-step:
1. Identify the given values:
- Heat added ([tex]\( q \)[/tex]) = 1,540 Joules
- Mass ([tex]\( m \)[/tex]) = 200.0 grams
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) = 20.0°C
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]) = 40.0°C
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
Thus,
[tex]\[ \Delta T = 40.0°C - 20.0°C = 20.0°C \][/tex]
3. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
4. Substitute the values into the formula:
[tex]\[ C_p = \frac{1,540 \, \text{J}}{200.0 \, \text{g} \cdot 20.0 \, \text{°C}} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
5. Calculate the result:
[tex]\[ C_p = 0.385 \, \text{J/g°C} \][/tex]
The specific heat of copper is [tex]\( 0.385 \, \text{J/g°C} \)[/tex].
So the correct answer is:
[tex]\[ 0.385 \, \text{J/g°C} \][/tex]
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat added (in Joules),
- [tex]\( m \)[/tex] is the mass of the substance (in grams),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in Celsius),
- [tex]\( C_p \)[/tex] is the specific heat (in J/g°C).
Let's go through this step-by-step:
1. Identify the given values:
- Heat added ([tex]\( q \)[/tex]) = 1,540 Joules
- Mass ([tex]\( m \)[/tex]) = 200.0 grams
- Initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) = 20.0°C
- Final temperature ([tex]\( T_{\text{final}} \)[/tex]) = 40.0°C
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
Thus,
[tex]\[ \Delta T = 40.0°C - 20.0°C = 20.0°C \][/tex]
3. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \cdot \Delta T} \][/tex]
4. Substitute the values into the formula:
[tex]\[ C_p = \frac{1,540 \, \text{J}}{200.0 \, \text{g} \cdot 20.0 \, \text{°C}} \][/tex]
[tex]\[ C_p = \frac{1,540}{4,000} \][/tex]
5. Calculate the result:
[tex]\[ C_p = 0.385 \, \text{J/g°C} \][/tex]
The specific heat of copper is [tex]\( 0.385 \, \text{J/g°C} \)[/tex].
So the correct answer is:
[tex]\[ 0.385 \, \text{J/g°C} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.