Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the standard form of the given polynomial, we need to ensure that the terms are ordered by the power of [tex]\( x \)[/tex] in descending order. Here are the given options:
1. [tex]\(\frac{x^3}{2} - 2x^5 + \frac{x}{4} + 1\)[/tex]
2. [tex]\(-2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1\)[/tex]
3. [tex]\(-2x^5 + \frac{x}{4} + \frac{x^3}{2} + 1\)[/tex]
4. [tex]\(1 - 2x^5 + \frac{x^3}{2} + \frac{x}{4}\)[/tex]
Let's break down the process step-by-step:
1. Identify the terms of the polynomial:
- The term with the highest degree is [tex]\(-2x^5\)[/tex].
- The next highest degree term is [tex]\(\frac{x^3}{2}\)[/tex].
- Then comes the term [tex]\(\frac{x}{4}\)[/tex].
- Finally, we have the constant term [tex]\(1\)[/tex].
2. Arrange these terms in descending order of their degrees:
- Start with the highest degree term: [tex]\(-2x^5\)[/tex].
- Follow this with the next highest degree term: [tex]\(\frac{x^3}{2}\)[/tex].
- Then place the next term: [tex]\(\frac{x}{4}\)[/tex].
- Finally, add the constant term [tex]\(1\)[/tex].
3. After ordering the terms, the polynomial in its standard form should look like:
[tex]\[ -2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1 \][/tex]
Reviewing the given options, we see that option 2 matches this ordered form:
[tex]\(-2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1\)[/tex].
Thus, the polynomial that represents the standard form of the original polynomial is:
[tex]\[ \boxed{-2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1} \][/tex]
1. [tex]\(\frac{x^3}{2} - 2x^5 + \frac{x}{4} + 1\)[/tex]
2. [tex]\(-2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1\)[/tex]
3. [tex]\(-2x^5 + \frac{x}{4} + \frac{x^3}{2} + 1\)[/tex]
4. [tex]\(1 - 2x^5 + \frac{x^3}{2} + \frac{x}{4}\)[/tex]
Let's break down the process step-by-step:
1. Identify the terms of the polynomial:
- The term with the highest degree is [tex]\(-2x^5\)[/tex].
- The next highest degree term is [tex]\(\frac{x^3}{2}\)[/tex].
- Then comes the term [tex]\(\frac{x}{4}\)[/tex].
- Finally, we have the constant term [tex]\(1\)[/tex].
2. Arrange these terms in descending order of their degrees:
- Start with the highest degree term: [tex]\(-2x^5\)[/tex].
- Follow this with the next highest degree term: [tex]\(\frac{x^3}{2}\)[/tex].
- Then place the next term: [tex]\(\frac{x}{4}\)[/tex].
- Finally, add the constant term [tex]\(1\)[/tex].
3. After ordering the terms, the polynomial in its standard form should look like:
[tex]\[ -2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1 \][/tex]
Reviewing the given options, we see that option 2 matches this ordered form:
[tex]\(-2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1\)[/tex].
Thus, the polynomial that represents the standard form of the original polynomial is:
[tex]\[ \boxed{-2x^5 + \frac{x^3}{2} + \frac{x}{4} + 1} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.