Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine if segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent, we need to calculate the lengths of both segments and compare them.
### Step 1: Calculate the Length of Segment [tex]\(\overline{AB}\)[/tex]
The coordinates of points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are:
- [tex]\(A(3, -4)\)[/tex]
- [tex]\(B(-10, -4)\)[/tex]
The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using this formula for segment [tex]\(\overline{AB}\)[/tex]:
[tex]\[ \text{Length of } \overline{AB} = \sqrt{(-10 - 3)^2 + (-4 - (-4))^2} \][/tex]
Simplify inside the parentheses:
[tex]\[ = \sqrt{(-13)^2 + 0^2} \][/tex]
Calculate the squares:
[tex]\[ = \sqrt{169 + 0} \][/tex]
Finally, take the square root:
[tex]\[ = \sqrt{169} = 13 \][/tex]
So, the length of segment [tex]\(\overline{AB}\)[/tex] is 13.
### Step 2: Calculate the Length of Segment [tex]\(\overline{CD}\)[/tex]
The coordinates of points [tex]\(C\)[/tex] and [tex]\(D\)[/tex] are:
- [tex]\(C(-2, 5)\)[/tex]
- [tex]\(D(3, -7)\)[/tex]
Using the same distance formula for segment [tex]\(\overline{CD}\)[/tex]:
[tex]\[ \text{Length of } \overline{CD} = \sqrt{(3 - (-2))^2 + (-7 - 5)^2} \][/tex]
Simplify inside the parentheses:
[tex]\[ = \sqrt{(3 + 2)^2 + (-7 - 5)^2} \][/tex]
[tex]\[ = \sqrt{5^2 + (-12)^2} \][/tex]
Calculate the squares:
[tex]\[ = \sqrt{25 + 144} \][/tex]
Finally, take the square root:
[tex]\[ = \sqrt{169} = 13 \][/tex]
So, the length of segment [tex]\(\overline{CD}\)[/tex] is also 13.
### Step 3: Compare the Lengths
We found that:
- Length of [tex]\(\overline{AB}\)[/tex] = 13
- Length of [tex]\(\overline{CD}\)[/tex] = 13
Since both lengths are equal, the segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent.
### Conclusion:
The segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent since their lengths are equal.
### Step 1: Calculate the Length of Segment [tex]\(\overline{AB}\)[/tex]
The coordinates of points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are:
- [tex]\(A(3, -4)\)[/tex]
- [tex]\(B(-10, -4)\)[/tex]
The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using this formula for segment [tex]\(\overline{AB}\)[/tex]:
[tex]\[ \text{Length of } \overline{AB} = \sqrt{(-10 - 3)^2 + (-4 - (-4))^2} \][/tex]
Simplify inside the parentheses:
[tex]\[ = \sqrt{(-13)^2 + 0^2} \][/tex]
Calculate the squares:
[tex]\[ = \sqrt{169 + 0} \][/tex]
Finally, take the square root:
[tex]\[ = \sqrt{169} = 13 \][/tex]
So, the length of segment [tex]\(\overline{AB}\)[/tex] is 13.
### Step 2: Calculate the Length of Segment [tex]\(\overline{CD}\)[/tex]
The coordinates of points [tex]\(C\)[/tex] and [tex]\(D\)[/tex] are:
- [tex]\(C(-2, 5)\)[/tex]
- [tex]\(D(3, -7)\)[/tex]
Using the same distance formula for segment [tex]\(\overline{CD}\)[/tex]:
[tex]\[ \text{Length of } \overline{CD} = \sqrt{(3 - (-2))^2 + (-7 - 5)^2} \][/tex]
Simplify inside the parentheses:
[tex]\[ = \sqrt{(3 + 2)^2 + (-7 - 5)^2} \][/tex]
[tex]\[ = \sqrt{5^2 + (-12)^2} \][/tex]
Calculate the squares:
[tex]\[ = \sqrt{25 + 144} \][/tex]
Finally, take the square root:
[tex]\[ = \sqrt{169} = 13 \][/tex]
So, the length of segment [tex]\(\overline{CD}\)[/tex] is also 13.
### Step 3: Compare the Lengths
We found that:
- Length of [tex]\(\overline{AB}\)[/tex] = 13
- Length of [tex]\(\overline{CD}\)[/tex] = 13
Since both lengths are equal, the segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent.
### Conclusion:
The segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent since their lengths are equal.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.