Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether the given improper integral is convergent or divergent, and if it is convergent, to evaluate it, we consider the integral:
[tex]$ \int_2^{\infty} \frac{3}{x^2 + 3x} \, dx $[/tex]
### Step 1: Simplify the Integrand
First, let's simplify the integrand. Notice that the denominator can be factored:
[tex]$ x^2 + 3x = x(x + 3) $[/tex]
Thus, the integrand becomes:
[tex]$ \frac{3}{x^2 + 3x} = \frac{3}{x(x + 3)} $[/tex]
### Step 2: Use Partial Fraction Decomposition
We can use partial fraction decomposition to split the fraction into simpler components. We assume:
[tex]$ \frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3} $[/tex]
Multiplying both sides by [tex]\( x(x + 3) \)[/tex] to clear the denominators:
[tex]$ 3 = A(x + 3) + Bx $[/tex]
Setting up the system of equations by equating the coefficients on both sides:
1. For the constant term: [tex]\( 3A = 3 \)[/tex]
2. For the coefficient of [tex]\( x \)[/tex]: [tex]\( A + B = 0 \)[/tex]
From the first equation, we get:
[tex]$ A = 1 $[/tex]
From the second equation, we can solve for [tex]\( B \)[/tex]:
[tex]$ 1 + B = 0 \implies B = -1 $[/tex]
So, the partial fraction decomposition is:
[tex]$ \frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3} $[/tex]
### Step 3: Integrate Term-by-Term
Now, rewrite the integral using the partial fractions:
[tex]$ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx $[/tex]
Separate the integral into two simpler integrals:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx - \int_2^{\infty} \frac{1}{x + 3} \, dx $[/tex]
### Step 4: Evaluate Each Integral
For the first integral:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx = \left[ \ln|x| \right]_2^{\infty} $[/tex]
As [tex]\( x \to \infty \)[/tex], [tex]\( \ln|x| \)[/tex] also approaches infinity, thus we need to consider the limit:
[tex]$ \lim_{b \to \infty} \left( \ln b - \ln 2 \right) $[/tex]
For the second integral, make a substitution [tex]\( u = x + 3 \)[/tex]:
[tex]$ \int_2^{\infty} \frac{1}{x + 3} \, dx = \int_5^{\infty} \frac{1}{u} \, du = \left[ \ln|u| \right]_5^{\infty} $[/tex]
### Step 5: Calculate the Definite Integrals
Evaluate the limits:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx = \left( \lim_{b \to \infty} \ln b - \ln 2 \right) = \lim_{b \to \infty} \ln b - \ln 2 $[/tex]
Here, [tex]\( \ln b \)[/tex] approaches infinity as [tex]\( b \to \infty \)[/tex].
For the second part:
[tex]$ \int_2^{\infty} \frac{1}{x+3} \, dx = \left( \lim_{b \to \infty} \ln(x + 3) - \ln(5) \right) = \lim_{b \to \infty} \ln(b + 3) - \ln 5 $[/tex]
Here, [tex]\( \ln(b + 3) \)[/tex] also approaches infinity as [tex]\( b \to \infty \)[/tex].
### Step 6: Combine the Results
Combining, we get:
[tex]\[ \left( \ln b - \ln 2 \right) - \left( \ln b - \ln 5 \right) \][/tex]
This simplifies as:
[tex]\[ ( \ln b - \ln 2 ) - ( \ln b - \ln 5 ) = - \ln 2 + \ln 5 \][/tex]
Therefore:
[tex]\[ \int_2^{\infty} \frac{3}{x(x+3)} \, dx = \ln 5 - \ln 2 \][/tex]
Since [tex]\( \ln 5 - \ln 2 = \log \frac{5}{2} \)[/tex],
Hence, the integral converges and the final value is:
[tex]$ \int_2^{\infty} \frac{3}{x(x + 3)} \, dx = \ln 5 - \ln 2 $[/tex]
[tex]$ \int_2^{\infty} \frac{3}{x^2 + 3x} \, dx $[/tex]
### Step 1: Simplify the Integrand
First, let's simplify the integrand. Notice that the denominator can be factored:
[tex]$ x^2 + 3x = x(x + 3) $[/tex]
Thus, the integrand becomes:
[tex]$ \frac{3}{x^2 + 3x} = \frac{3}{x(x + 3)} $[/tex]
### Step 2: Use Partial Fraction Decomposition
We can use partial fraction decomposition to split the fraction into simpler components. We assume:
[tex]$ \frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3} $[/tex]
Multiplying both sides by [tex]\( x(x + 3) \)[/tex] to clear the denominators:
[tex]$ 3 = A(x + 3) + Bx $[/tex]
Setting up the system of equations by equating the coefficients on both sides:
1. For the constant term: [tex]\( 3A = 3 \)[/tex]
2. For the coefficient of [tex]\( x \)[/tex]: [tex]\( A + B = 0 \)[/tex]
From the first equation, we get:
[tex]$ A = 1 $[/tex]
From the second equation, we can solve for [tex]\( B \)[/tex]:
[tex]$ 1 + B = 0 \implies B = -1 $[/tex]
So, the partial fraction decomposition is:
[tex]$ \frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3} $[/tex]
### Step 3: Integrate Term-by-Term
Now, rewrite the integral using the partial fractions:
[tex]$ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx $[/tex]
Separate the integral into two simpler integrals:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx - \int_2^{\infty} \frac{1}{x + 3} \, dx $[/tex]
### Step 4: Evaluate Each Integral
For the first integral:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx = \left[ \ln|x| \right]_2^{\infty} $[/tex]
As [tex]\( x \to \infty \)[/tex], [tex]\( \ln|x| \)[/tex] also approaches infinity, thus we need to consider the limit:
[tex]$ \lim_{b \to \infty} \left( \ln b - \ln 2 \right) $[/tex]
For the second integral, make a substitution [tex]\( u = x + 3 \)[/tex]:
[tex]$ \int_2^{\infty} \frac{1}{x + 3} \, dx = \int_5^{\infty} \frac{1}{u} \, du = \left[ \ln|u| \right]_5^{\infty} $[/tex]
### Step 5: Calculate the Definite Integrals
Evaluate the limits:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx = \left( \lim_{b \to \infty} \ln b - \ln 2 \right) = \lim_{b \to \infty} \ln b - \ln 2 $[/tex]
Here, [tex]\( \ln b \)[/tex] approaches infinity as [tex]\( b \to \infty \)[/tex].
For the second part:
[tex]$ \int_2^{\infty} \frac{1}{x+3} \, dx = \left( \lim_{b \to \infty} \ln(x + 3) - \ln(5) \right) = \lim_{b \to \infty} \ln(b + 3) - \ln 5 $[/tex]
Here, [tex]\( \ln(b + 3) \)[/tex] also approaches infinity as [tex]\( b \to \infty \)[/tex].
### Step 6: Combine the Results
Combining, we get:
[tex]\[ \left( \ln b - \ln 2 \right) - \left( \ln b - \ln 5 \right) \][/tex]
This simplifies as:
[tex]\[ ( \ln b - \ln 2 ) - ( \ln b - \ln 5 ) = - \ln 2 + \ln 5 \][/tex]
Therefore:
[tex]\[ \int_2^{\infty} \frac{3}{x(x+3)} \, dx = \ln 5 - \ln 2 \][/tex]
Since [tex]\( \ln 5 - \ln 2 = \log \frac{5}{2} \)[/tex],
Hence, the integral converges and the final value is:
[tex]$ \int_2^{\infty} \frac{3}{x(x + 3)} \, dx = \ln 5 - \ln 2 $[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.