Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

3. (15 pts) Determine whether the integral is convergent or divergent. If it is convergent, evaluate the integral.

[tex]\[
\int_2^{\infty} \frac{3}{x^2+3x} \, dx
\][/tex]

Sagot :

To determine whether the given improper integral is convergent or divergent, and if it is convergent, to evaluate it, we consider the integral:
[tex]$ \int_2^{\infty} \frac{3}{x^2 + 3x} \, dx $[/tex]

### Step 1: Simplify the Integrand

First, let's simplify the integrand. Notice that the denominator can be factored:
[tex]$ x^2 + 3x = x(x + 3) $[/tex]

Thus, the integrand becomes:
[tex]$ \frac{3}{x^2 + 3x} = \frac{3}{x(x + 3)} $[/tex]

### Step 2: Use Partial Fraction Decomposition

We can use partial fraction decomposition to split the fraction into simpler components. We assume:
[tex]$ \frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3} $[/tex]

Multiplying both sides by [tex]\( x(x + 3) \)[/tex] to clear the denominators:
[tex]$ 3 = A(x + 3) + Bx $[/tex]

Setting up the system of equations by equating the coefficients on both sides:
1. For the constant term: [tex]\( 3A = 3 \)[/tex]
2. For the coefficient of [tex]\( x \)[/tex]: [tex]\( A + B = 0 \)[/tex]

From the first equation, we get:
[tex]$ A = 1 $[/tex]

From the second equation, we can solve for [tex]\( B \)[/tex]:
[tex]$ 1 + B = 0 \implies B = -1 $[/tex]

So, the partial fraction decomposition is:
[tex]$ \frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3} $[/tex]

### Step 3: Integrate Term-by-Term

Now, rewrite the integral using the partial fractions:
[tex]$ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx $[/tex]

Separate the integral into two simpler integrals:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx - \int_2^{\infty} \frac{1}{x + 3} \, dx $[/tex]

### Step 4: Evaluate Each Integral

For the first integral:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx = \left[ \ln|x| \right]_2^{\infty} $[/tex]

As [tex]\( x \to \infty \)[/tex], [tex]\( \ln|x| \)[/tex] also approaches infinity, thus we need to consider the limit:
[tex]$ \lim_{b \to \infty} \left( \ln b - \ln 2 \right) $[/tex]

For the second integral, make a substitution [tex]\( u = x + 3 \)[/tex]:
[tex]$ \int_2^{\infty} \frac{1}{x + 3} \, dx = \int_5^{\infty} \frac{1}{u} \, du = \left[ \ln|u| \right]_5^{\infty} $[/tex]

### Step 5: Calculate the Definite Integrals

Evaluate the limits:
[tex]$ \int_2^{\infty} \frac{1}{x} \, dx = \left( \lim_{b \to \infty} \ln b - \ln 2 \right) = \lim_{b \to \infty} \ln b - \ln 2 $[/tex]
Here, [tex]\( \ln b \)[/tex] approaches infinity as [tex]\( b \to \infty \)[/tex].

For the second part:
[tex]$ \int_2^{\infty} \frac{1}{x+3} \, dx = \left( \lim_{b \to \infty} \ln(x + 3) - \ln(5) \right) = \lim_{b \to \infty} \ln(b + 3) - \ln 5 $[/tex]
Here, [tex]\( \ln(b + 3) \)[/tex] also approaches infinity as [tex]\( b \to \infty \)[/tex].

### Step 6: Combine the Results
Combining, we get:

[tex]\[ \left( \ln b - \ln 2 \right) - \left( \ln b - \ln 5 \right) \][/tex]

This simplifies as:
[tex]\[ ( \ln b - \ln 2 ) - ( \ln b - \ln 5 ) = - \ln 2 + \ln 5 \][/tex]

Therefore:
[tex]\[ \int_2^{\infty} \frac{3}{x(x+3)} \, dx = \ln 5 - \ln 2 \][/tex]

Since [tex]\( \ln 5 - \ln 2 = \log \frac{5}{2} \)[/tex],

Hence, the integral converges and the final value is:
[tex]$ \int_2^{\infty} \frac{3}{x(x + 3)} \, dx = \ln 5 - \ln 2 $[/tex]