Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine whether the expression [tex]\(\sqrt{3x}\)[/tex] is equivalent to [tex]\(x \sqrt{3}\)[/tex], let's carefully analyze each mathematical statement.
1. Understanding [tex]\(\sqrt{3x}\)[/tex]:
- The expression [tex]\(\sqrt{3x}\)[/tex] represents the square root of the entire product of [tex]\(3\)[/tex] and [tex]\(x\)[/tex].
- Mathematically, [tex]\(\sqrt{3x}\)[/tex] can be interpreted as [tex]\(\sqrt{3 \cdot x}\)[/tex], which means we first multiply [tex]\(3\)[/tex] by [tex]\(x\)[/tex] and then take the square root of the result.
2. Understanding [tex]\(x\sqrt{3}\)[/tex]:
- The expression [tex]\(x\sqrt{3}\)[/tex] represents the product of [tex]\(x\)[/tex] and the square root of [tex]\(3\)[/tex].
- Here, [tex]\(\sqrt{3}\)[/tex] is computed first and then multiplied by [tex]\(x\)[/tex].
To see why these expressions are not equivalent, consider the following:
- For [tex]\(\sqrt{3x}\)[/tex], the order of operations dictates that multiplication inside the square root occurs first. Thus, it involves different steps relative to the two operations (multiplication then square root).
- For [tex]\(x\sqrt{3}\)[/tex], the square root operation ([tex]\(\sqrt{3}\)[/tex]) is entirely independent of [tex]\(x\)[/tex], and they are multiplied afterward.
To observe this with actual numbers, suppose [tex]\(x = 4\)[/tex]:
- [tex]\(\sqrt{3 \cdot 4} = \sqrt{12}\)[/tex]
- Calculating this: [tex]\(\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}\)[/tex]
- However, [tex]\(4\sqrt{3}\)[/tex] is simply [tex]\(4\)[/tex] multiplied by [tex]\(\sqrt{3}\)[/tex].
As seen, [tex]\(\sqrt{12}\)[/tex] and [tex]\(4\sqrt{3}\)[/tex] are not the same value, hence [tex]\(\sqrt{3x}\)[/tex] is not equal to [tex]\(x\sqrt{3}\)[/tex].
So, the correct answer is:
B. False
The expressions [tex]\(\sqrt{3 x}\)[/tex] and [tex]\(x \sqrt{3}\)[/tex] are not equivalent.
1. Understanding [tex]\(\sqrt{3x}\)[/tex]:
- The expression [tex]\(\sqrt{3x}\)[/tex] represents the square root of the entire product of [tex]\(3\)[/tex] and [tex]\(x\)[/tex].
- Mathematically, [tex]\(\sqrt{3x}\)[/tex] can be interpreted as [tex]\(\sqrt{3 \cdot x}\)[/tex], which means we first multiply [tex]\(3\)[/tex] by [tex]\(x\)[/tex] and then take the square root of the result.
2. Understanding [tex]\(x\sqrt{3}\)[/tex]:
- The expression [tex]\(x\sqrt{3}\)[/tex] represents the product of [tex]\(x\)[/tex] and the square root of [tex]\(3\)[/tex].
- Here, [tex]\(\sqrt{3}\)[/tex] is computed first and then multiplied by [tex]\(x\)[/tex].
To see why these expressions are not equivalent, consider the following:
- For [tex]\(\sqrt{3x}\)[/tex], the order of operations dictates that multiplication inside the square root occurs first. Thus, it involves different steps relative to the two operations (multiplication then square root).
- For [tex]\(x\sqrt{3}\)[/tex], the square root operation ([tex]\(\sqrt{3}\)[/tex]) is entirely independent of [tex]\(x\)[/tex], and they are multiplied afterward.
To observe this with actual numbers, suppose [tex]\(x = 4\)[/tex]:
- [tex]\(\sqrt{3 \cdot 4} = \sqrt{12}\)[/tex]
- Calculating this: [tex]\(\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}\)[/tex]
- However, [tex]\(4\sqrt{3}\)[/tex] is simply [tex]\(4\)[/tex] multiplied by [tex]\(\sqrt{3}\)[/tex].
As seen, [tex]\(\sqrt{12}\)[/tex] and [tex]\(4\sqrt{3}\)[/tex] are not the same value, hence [tex]\(\sqrt{3x}\)[/tex] is not equal to [tex]\(x\sqrt{3}\)[/tex].
So, the correct answer is:
B. False
The expressions [tex]\(\sqrt{3 x}\)[/tex] and [tex]\(x \sqrt{3}\)[/tex] are not equivalent.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.