Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine whether the integral [tex]\(\int_2^{\infty} \frac{3}{x^2 + 3x} \, dx\)[/tex] is convergent or divergent, and evaluate it if it's convergent, follow these steps:
1. Rewrite the Integrand:
Rewrite the integrand to simplify it:
[tex]\[ \frac{3}{x^2 + 3x} = \frac{3}{x(x + 3)} \][/tex]
2. Use Partial Fraction Decomposition:
Decompose the rational function into partial fractions to simplify the integration process:
[tex]\[ \frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3} \][/tex]
To find [tex]\(A\)[/tex] and [tex]\(B\)[/tex], set up the equation:
[tex]\[ 3 = A(x + 3) + Bx \][/tex]
Equate coefficients for like terms:
[tex]\[ 3 = A(x + 3) + Bx \implies 3 = Ax + 3A + Bx \implies 3 = (A + B)x + 3A \][/tex]
From this, we get two equations:
[tex]\[ A + B = 0 \][/tex]
[tex]\[ 3A = 3 \][/tex]
Solving these, we find:
[tex]\[ A = 1 \quad \text{and} \quad B = -1 \][/tex]
Thus, the integrand can be written as:
[tex]\[ \frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3} \][/tex]
3. Set Up the Integral:
Substitute the partial fractions back into the integral:
[tex]\[ \int_2^{\infty} \frac{3}{x^2 + 3x} \, dx = \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx \][/tex]
4. Integrate Term by Term:
Integrate each term separately:
[tex]\[ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \int_2^{\infty} \frac{1}{x} \, dx - \int_2^{\infty} \frac{1}{x + 3} \, dx \][/tex]
Integrate each term:
[tex]\[ \int \frac{1}{x} \, dx = \ln|x| \quad \text{and} \quad \int \frac{1}{x+3} \, dx = \ln|x + 3| \][/tex]
Therefore:
[tex]\[ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \left[ \ln|x| - \ln|x + 3| \right]_2^{\infty} \][/tex]
5. Evaluate the Definite Integral:
Evaluate the limits from [tex]\(2\)[/tex] to [tex]\(\infty\)[/tex]:
[tex]\[ \left[ \ln|x| - \ln|x + 3| \right]_2^{\infty} = \lim_{t \to \infty} \left( \ln|t| - \ln|t + 3| \right) - \left( \ln|2| - \ln|5| \right) \][/tex]
As [tex]\(t \to \infty\)[/tex]:
[tex]\[ \ln|t| - \ln|t + 3| \to 0 \quad \text{because} \quad \ln|t(t+3)^{-1}| \approx \ln(1) = 0 \][/tex]
Therefore:
[tex]\[ \left( \ln|2| - \ln|5| \right) = -\ln\left(\frac{5}{2}\right) \][/tex]
Hence, the integral converges, and its value is:
[tex]\[ -(\ln 2 - \ln 5) = -\ln 2 + \ln 5 = \ln\left(\frac{5}{2}\right) \][/tex]
So, the improper integral [tex]\(\int_2^{\infty} \frac{3}{x^2 + 3x} \, dx\)[/tex] is convergent, and its value is [tex]\(-\ln (2) + \ln (5)\)[/tex].
1. Rewrite the Integrand:
Rewrite the integrand to simplify it:
[tex]\[ \frac{3}{x^2 + 3x} = \frac{3}{x(x + 3)} \][/tex]
2. Use Partial Fraction Decomposition:
Decompose the rational function into partial fractions to simplify the integration process:
[tex]\[ \frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3} \][/tex]
To find [tex]\(A\)[/tex] and [tex]\(B\)[/tex], set up the equation:
[tex]\[ 3 = A(x + 3) + Bx \][/tex]
Equate coefficients for like terms:
[tex]\[ 3 = A(x + 3) + Bx \implies 3 = Ax + 3A + Bx \implies 3 = (A + B)x + 3A \][/tex]
From this, we get two equations:
[tex]\[ A + B = 0 \][/tex]
[tex]\[ 3A = 3 \][/tex]
Solving these, we find:
[tex]\[ A = 1 \quad \text{and} \quad B = -1 \][/tex]
Thus, the integrand can be written as:
[tex]\[ \frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3} \][/tex]
3. Set Up the Integral:
Substitute the partial fractions back into the integral:
[tex]\[ \int_2^{\infty} \frac{3}{x^2 + 3x} \, dx = \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx \][/tex]
4. Integrate Term by Term:
Integrate each term separately:
[tex]\[ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \int_2^{\infty} \frac{1}{x} \, dx - \int_2^{\infty} \frac{1}{x + 3} \, dx \][/tex]
Integrate each term:
[tex]\[ \int \frac{1}{x} \, dx = \ln|x| \quad \text{and} \quad \int \frac{1}{x+3} \, dx = \ln|x + 3| \][/tex]
Therefore:
[tex]\[ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \left[ \ln|x| - \ln|x + 3| \right]_2^{\infty} \][/tex]
5. Evaluate the Definite Integral:
Evaluate the limits from [tex]\(2\)[/tex] to [tex]\(\infty\)[/tex]:
[tex]\[ \left[ \ln|x| - \ln|x + 3| \right]_2^{\infty} = \lim_{t \to \infty} \left( \ln|t| - \ln|t + 3| \right) - \left( \ln|2| - \ln|5| \right) \][/tex]
As [tex]\(t \to \infty\)[/tex]:
[tex]\[ \ln|t| - \ln|t + 3| \to 0 \quad \text{because} \quad \ln|t(t+3)^{-1}| \approx \ln(1) = 0 \][/tex]
Therefore:
[tex]\[ \left( \ln|2| - \ln|5| \right) = -\ln\left(\frac{5}{2}\right) \][/tex]
Hence, the integral converges, and its value is:
[tex]\[ -(\ln 2 - \ln 5) = -\ln 2 + \ln 5 = \ln\left(\frac{5}{2}\right) \][/tex]
So, the improper integral [tex]\(\int_2^{\infty} \frac{3}{x^2 + 3x} \, dx\)[/tex] is convergent, and its value is [tex]\(-\ln (2) + \ln (5)\)[/tex].
Answer:\ln \frac{5}{2}
Step-by-step explanation:
1. Simplify the integrand:
\int_{2}^{\infty} \frac{3}{x^2 + 3x} \, dx = \int_{2}^{\infty} \frac{3}{x(x + 3)} \, dx
2. Partial Fraction Decomposition:
Decompose \frac{3}{x(x + 3)} into partial fractions:
\frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3}
Solving for A and B:
3 = A(x + 3) + Bx
Setting x = 0:
\[
3 = A(0 + 3) \implies A = 1
\]
Setting x = -3:
\[
3 = B(-3) \implies B = -1
\]
Therefore:
\frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3}
3. Rewrite the integral:
\int_{2}^{\infty} \frac{3}{x(x + 3)} \, dx = \int_{2}^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx
4. Integrate term by term:
\int_{2}^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \int_{2}^{\infty} \frac{1}{x} \, dx - \int_{2}^{\infty} \frac{1}{x + 3} \, dx
Find the antiderivative of each term:
\int \frac{1}{x} \, dx = \ln|x| + C
\int \frac{1}{x + 3} \, dx = \ln|x + 3| + C
5. Evaluate the definite integrals:
\left[ \ln|x| \right]{2}^{\infty} - \left[ \ln|x + 3| \right]{2}^{\infty}
Consider the limit as x \to \infty:
\lim_{b \to \infty} \left( \int_{2}^{b} \frac{1}{x} \, dx - \int_{2}^{b} \frac{1}{x + 3} \, dx \right)
= \lim_{b \to \infty} \left( \left[ \ln|x| \right]{2}^{b} - \left[ \ln|x + 3| \right]{2}^{b} \right)
= \lim_{b \to \infty} \left( \ln b - \ln 2 \right) - \lim_{b \to \infty} \left( \ln (b + 3) - \ln 5 \right)
6. Simplify the expression:
= \lim_{b \to \infty} \left( \ln b - \ln (b + 3) \right) + (\ln 5 - \ln 2)
= \lim_{b \to \infty} \left( \ln \frac{b}{b + 3} \right) + \ln \frac{5}{2}
As b \to \infty, \frac{b}{b + 3} \to 1, and \ln 1 = 0:
= 0 + \ln \frac{5}{2}
= \ln \frac{5}{2}
Therefore, the integral is convergent, and its value is:
\ln \frac{5}{2}
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.