Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Determine whether the integral is convergent or divergent. If it is convergent, evaluate the integral.

[tex]\int_2^{\infty} \frac{3}{x^2 + 3x} \, dx[/tex]


Sagot :

To determine whether the integral [tex]\(\int_2^{\infty} \frac{3}{x^2 + 3x} \, dx\)[/tex] is convergent or divergent, and evaluate it if it's convergent, follow these steps:

1. Rewrite the Integrand:
Rewrite the integrand to simplify it:

[tex]\[ \frac{3}{x^2 + 3x} = \frac{3}{x(x + 3)} \][/tex]

2. Use Partial Fraction Decomposition:
Decompose the rational function into partial fractions to simplify the integration process:

[tex]\[ \frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3} \][/tex]

To find [tex]\(A\)[/tex] and [tex]\(B\)[/tex], set up the equation:

[tex]\[ 3 = A(x + 3) + Bx \][/tex]

Equate coefficients for like terms:

[tex]\[ 3 = A(x + 3) + Bx \implies 3 = Ax + 3A + Bx \implies 3 = (A + B)x + 3A \][/tex]

From this, we get two equations:

[tex]\[ A + B = 0 \][/tex]
[tex]\[ 3A = 3 \][/tex]

Solving these, we find:

[tex]\[ A = 1 \quad \text{and} \quad B = -1 \][/tex]

Thus, the integrand can be written as:

[tex]\[ \frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3} \][/tex]

3. Set Up the Integral:
Substitute the partial fractions back into the integral:

[tex]\[ \int_2^{\infty} \frac{3}{x^2 + 3x} \, dx = \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx \][/tex]

4. Integrate Term by Term:
Integrate each term separately:

[tex]\[ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \int_2^{\infty} \frac{1}{x} \, dx - \int_2^{\infty} \frac{1}{x + 3} \, dx \][/tex]

Integrate each term:

[tex]\[ \int \frac{1}{x} \, dx = \ln|x| \quad \text{and} \quad \int \frac{1}{x+3} \, dx = \ln|x + 3| \][/tex]

Therefore:

[tex]\[ \int_2^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \left[ \ln|x| - \ln|x + 3| \right]_2^{\infty} \][/tex]

5. Evaluate the Definite Integral:
Evaluate the limits from [tex]\(2\)[/tex] to [tex]\(\infty\)[/tex]:

[tex]\[ \left[ \ln|x| - \ln|x + 3| \right]_2^{\infty} = \lim_{t \to \infty} \left( \ln|t| - \ln|t + 3| \right) - \left( \ln|2| - \ln|5| \right) \][/tex]

As [tex]\(t \to \infty\)[/tex]:

[tex]\[ \ln|t| - \ln|t + 3| \to 0 \quad \text{because} \quad \ln|t(t+3)^{-1}| \approx \ln(1) = 0 \][/tex]

Therefore:

[tex]\[ \left( \ln|2| - \ln|5| \right) = -\ln\left(\frac{5}{2}\right) \][/tex]

Hence, the integral converges, and its value is:

[tex]\[ -(\ln 2 - \ln 5) = -\ln 2 + \ln 5 = \ln\left(\frac{5}{2}\right) \][/tex]

So, the improper integral [tex]\(\int_2^{\infty} \frac{3}{x^2 + 3x} \, dx\)[/tex] is convergent, and its value is [tex]\(-\ln (2) + \ln (5)\)[/tex].

Answer:\ln \frac{5}{2}

Step-by-step explanation:

1. Simplify the integrand:

\int_{2}^{\infty} \frac{3}{x^2 + 3x} \, dx = \int_{2}^{\infty} \frac{3}{x(x + 3)} \, dx

2. Partial Fraction Decomposition:

Decompose \frac{3}{x(x + 3)} into partial fractions:

\frac{3}{x(x + 3)} = \frac{A}{x} + \frac{B}{x + 3}

Solving for A and B:

3 = A(x + 3) + Bx

Setting x = 0:

\[

3 = A(0 + 3) \implies A = 1

\]

Setting x = -3:

\[

3 = B(-3) \implies B = -1

\]

Therefore:

\frac{3}{x(x + 3)} = \frac{1}{x} - \frac{1}{x + 3}

3. Rewrite the integral:

\int_{2}^{\infty} \frac{3}{x(x + 3)} \, dx = \int_{2}^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx

4. Integrate term by term:

\int_{2}^{\infty} \left( \frac{1}{x} - \frac{1}{x + 3} \right) \, dx = \int_{2}^{\infty} \frac{1}{x} \, dx - \int_{2}^{\infty} \frac{1}{x + 3} \, dx

Find the antiderivative of each term:

\int \frac{1}{x} \, dx = \ln|x| + C

\int \frac{1}{x + 3} \, dx = \ln|x + 3| + C

5. Evaluate the definite integrals:

\left[ \ln|x| \right]{2}^{\infty} - \left[ \ln|x + 3| \right]{2}^{\infty}

Consider the limit as x \to \infty:

\lim_{b \to \infty} \left( \int_{2}^{b} \frac{1}{x} \, dx - \int_{2}^{b} \frac{1}{x + 3} \, dx \right)

= \lim_{b \to \infty} \left( \left[ \ln|x| \right]{2}^{b} - \left[ \ln|x + 3| \right]{2}^{b} \right)

= \lim_{b \to \infty} \left( \ln b - \ln 2 \right) - \lim_{b \to \infty} \left( \ln (b + 3) - \ln 5 \right)

6. Simplify the expression:

= \lim_{b \to \infty} \left( \ln b - \ln (b + 3) \right) + (\ln 5 - \ln 2)

= \lim_{b \to \infty} \left( \ln \frac{b}{b + 3} \right) + \ln \frac{5}{2}

As b \to \infty, \frac{b}{b + 3} \to 1, and \ln 1 = 0:

= 0 + \ln \frac{5}{2}

= \ln \frac{5}{2}

Therefore, the integral is convergent, and its value is:

\ln \frac{5}{2}