Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the problem of finding the least common denominator (LCD) and expressing each fraction with that denominator, we will first outline the steps needed to achieve this.
### Step 1: Identify the Denominators
We'll start by identifying the denominators of the given fractions:
- The first fraction is [tex]\(\frac{1}{9}\)[/tex], so the denominator is [tex]\(9\)[/tex].
- The second fraction is [tex]\(\frac{2}{15}\)[/tex], so the denominator is [tex]\(15\)[/tex].
### Step 2: Find the Least Common Denominator (LCD)
To find the least common denominator, we'll determine the smallest number that is a multiple of both [tex]\(9\)[/tex] and [tex]\(15\)[/tex].
The multiples of [tex]\(9\)[/tex] are:
[tex]\[ 9, 18, 27, 36, 45, 54, 63, \ldots \][/tex]
The multiples of [tex]\(15\)[/tex] are:
[tex]\[ 15, 30, 45, 60, 75, 90, \ldots \][/tex]
The smallest common multiple of [tex]\(9\)[/tex] and [tex]\(15\)[/tex] is [tex]\(45\)[/tex]. Thus, the least common denominator (LCD) is [tex]\(45\)[/tex].
### Step 3: Convert Fractions to the LCD
Next, we'll express each fraction using the least common denominator of [tex]\(45\)[/tex].
#### For [tex]\(\frac{1}{9}\)[/tex]:
To convert [tex]\(\frac{1}{9}\)[/tex] to a fraction with a denominator of [tex]\(45\)[/tex]:
[tex]\[ \frac{1}{9} = \frac{1 \times 5}{9 \times 5} = \frac{5}{45} \][/tex]
#### For [tex]\(\frac{2}{15}\)[/tex]:
To convert [tex]\(\frac{2}{15}\)[/tex] to a fraction with a denominator of [tex]\(45\)[/tex]:
[tex]\[ \frac{2}{15} = \frac{2 \times 3}{15 \times 3} = \frac{6}{45} \][/tex]
### Step 4: Write the Final Fractions
Now that we've converted both fractions to have the common denominator, we can write them as:
- [tex]\(\frac{1}{9}\)[/tex] becomes [tex]\(\frac{5}{45}\)[/tex].
- [tex]\(\frac{2}{15}\)[/tex] becomes [tex]\(\frac{6}{45}\)[/tex].
### Summary
We found that the least common denominator for the fractions [tex]\(\frac{1}{9}\)[/tex] and [tex]\(\frac{2}{15}\)[/tex] is [tex]\(45\)[/tex]. Converted to this common denominator, the fractions are:
[tex]\[ \frac{1}{9} = \frac{5}{45} \][/tex]
[tex]\[ \frac{2}{15} = \frac{6}{45} \][/tex]
Thus, the final solution is:
[tex]\[ \frac{5}{45}, \frac{6}{45} \][/tex]
### Step 1: Identify the Denominators
We'll start by identifying the denominators of the given fractions:
- The first fraction is [tex]\(\frac{1}{9}\)[/tex], so the denominator is [tex]\(9\)[/tex].
- The second fraction is [tex]\(\frac{2}{15}\)[/tex], so the denominator is [tex]\(15\)[/tex].
### Step 2: Find the Least Common Denominator (LCD)
To find the least common denominator, we'll determine the smallest number that is a multiple of both [tex]\(9\)[/tex] and [tex]\(15\)[/tex].
The multiples of [tex]\(9\)[/tex] are:
[tex]\[ 9, 18, 27, 36, 45, 54, 63, \ldots \][/tex]
The multiples of [tex]\(15\)[/tex] are:
[tex]\[ 15, 30, 45, 60, 75, 90, \ldots \][/tex]
The smallest common multiple of [tex]\(9\)[/tex] and [tex]\(15\)[/tex] is [tex]\(45\)[/tex]. Thus, the least common denominator (LCD) is [tex]\(45\)[/tex].
### Step 3: Convert Fractions to the LCD
Next, we'll express each fraction using the least common denominator of [tex]\(45\)[/tex].
#### For [tex]\(\frac{1}{9}\)[/tex]:
To convert [tex]\(\frac{1}{9}\)[/tex] to a fraction with a denominator of [tex]\(45\)[/tex]:
[tex]\[ \frac{1}{9} = \frac{1 \times 5}{9 \times 5} = \frac{5}{45} \][/tex]
#### For [tex]\(\frac{2}{15}\)[/tex]:
To convert [tex]\(\frac{2}{15}\)[/tex] to a fraction with a denominator of [tex]\(45\)[/tex]:
[tex]\[ \frac{2}{15} = \frac{2 \times 3}{15 \times 3} = \frac{6}{45} \][/tex]
### Step 4: Write the Final Fractions
Now that we've converted both fractions to have the common denominator, we can write them as:
- [tex]\(\frac{1}{9}\)[/tex] becomes [tex]\(\frac{5}{45}\)[/tex].
- [tex]\(\frac{2}{15}\)[/tex] becomes [tex]\(\frac{6}{45}\)[/tex].
### Summary
We found that the least common denominator for the fractions [tex]\(\frac{1}{9}\)[/tex] and [tex]\(\frac{2}{15}\)[/tex] is [tex]\(45\)[/tex]. Converted to this common denominator, the fractions are:
[tex]\[ \frac{1}{9} = \frac{5}{45} \][/tex]
[tex]\[ \frac{2}{15} = \frac{6}{45} \][/tex]
Thus, the final solution is:
[tex]\[ \frac{5}{45}, \frac{6}{45} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.