At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the Laurent series expansion of [tex]\( f(z) = \frac{1}{z^2 + 2z} \)[/tex] for [tex]\( 1 < |z - 1| < 3 \)[/tex], we start with partial fraction decomposition.
First, we can rewrite [tex]\( f(z) \)[/tex] as:
[tex]\[ f(z) = \frac{1}{z^2 + 2z} = \frac{1}{z(z + 2)}. \][/tex]
To decompose [tex]\( \frac{1}{z(z + 2)} \)[/tex] into partial fractions, we write:
[tex]\[ \frac{1}{z(z + 2)} = \frac{A}{z} + \frac{B}{z + 2}. \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z + 2) + Bz. \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = A(2), \][/tex]
[tex]\[ A = \frac{1}{2}. \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = B(-2), \][/tex]
[tex]\[ B = -\frac{1}{2}. \][/tex]
So, the partial fractions decomposition is:
[tex]\[ \frac{1}{z(z + 2)} = \frac{1}{2z} - \frac{1}{2(z + 2)}. \][/tex]
We now need to express this in a form suitable for the Laurent series in the given annulus [tex]\( 1 < |z - 1| < 3 \)[/tex].
The expression [tex]\( \frac{1}{2z} \)[/tex] is already in a suitable form.
For [tex]\( \frac{1}{2(z + 2)} \)[/tex], we note that [tex]\( z + 2 = (z - 1) + 3 \)[/tex].
We will write this expression in terms of [tex]\( \frac{1}{z-1} \)[/tex]:
[tex]\[ \frac{1}{z + 2} = \frac{1}{(z - 1) + 3}. \][/tex]
Using the series expansion for [tex]\( \frac{1}{a+b} \)[/tex], where [tex]\( |b| < |a| \)[/tex],
[tex]\[ \frac{1}{a+b} = \frac{1}{a} \cdot \frac{1}{1 - \left(-\frac{b}{a}\right)} = \frac{1}{a} \sum_{n=0}^\infty \left(-\frac{b}{a}\right)^n. \][/tex]
Here [tex]\( a = 3 \)[/tex] and [tex]\( b = z-1 \)[/tex], so:
[tex]\[ \frac{1}{(z - 1) + 3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{z-1}{3}\right)} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n. \][/tex]
Therefore,
[tex]\[ \frac{1}{z + 2} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n = \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}}. \][/tex]
Now multiply by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ -\frac{1}{2(z + 2)} = -\frac{1}{2} \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2^{(n+1)} \cdot 3}. \][/tex]
Thus, our Laurent Series in the given annulus is:
[tex]\[ \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}}. \][/tex]
It can be written as:
[tex]\[ f(z) = \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{6 \cdot 3^n}. \][/tex]
This is the required Laurent series expansion for the given function in the specified region.
First, we can rewrite [tex]\( f(z) \)[/tex] as:
[tex]\[ f(z) = \frac{1}{z^2 + 2z} = \frac{1}{z(z + 2)}. \][/tex]
To decompose [tex]\( \frac{1}{z(z + 2)} \)[/tex] into partial fractions, we write:
[tex]\[ \frac{1}{z(z + 2)} = \frac{A}{z} + \frac{B}{z + 2}. \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z + 2) + Bz. \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = A(2), \][/tex]
[tex]\[ A = \frac{1}{2}. \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = B(-2), \][/tex]
[tex]\[ B = -\frac{1}{2}. \][/tex]
So, the partial fractions decomposition is:
[tex]\[ \frac{1}{z(z + 2)} = \frac{1}{2z} - \frac{1}{2(z + 2)}. \][/tex]
We now need to express this in a form suitable for the Laurent series in the given annulus [tex]\( 1 < |z - 1| < 3 \)[/tex].
The expression [tex]\( \frac{1}{2z} \)[/tex] is already in a suitable form.
For [tex]\( \frac{1}{2(z + 2)} \)[/tex], we note that [tex]\( z + 2 = (z - 1) + 3 \)[/tex].
We will write this expression in terms of [tex]\( \frac{1}{z-1} \)[/tex]:
[tex]\[ \frac{1}{z + 2} = \frac{1}{(z - 1) + 3}. \][/tex]
Using the series expansion for [tex]\( \frac{1}{a+b} \)[/tex], where [tex]\( |b| < |a| \)[/tex],
[tex]\[ \frac{1}{a+b} = \frac{1}{a} \cdot \frac{1}{1 - \left(-\frac{b}{a}\right)} = \frac{1}{a} \sum_{n=0}^\infty \left(-\frac{b}{a}\right)^n. \][/tex]
Here [tex]\( a = 3 \)[/tex] and [tex]\( b = z-1 \)[/tex], so:
[tex]\[ \frac{1}{(z - 1) + 3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{z-1}{3}\right)} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n. \][/tex]
Therefore,
[tex]\[ \frac{1}{z + 2} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n = \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}}. \][/tex]
Now multiply by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ -\frac{1}{2(z + 2)} = -\frac{1}{2} \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2^{(n+1)} \cdot 3}. \][/tex]
Thus, our Laurent Series in the given annulus is:
[tex]\[ \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}}. \][/tex]
It can be written as:
[tex]\[ f(z) = \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{6 \cdot 3^n}. \][/tex]
This is the required Laurent series expansion for the given function in the specified region.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.