At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the Laurent series expansion of [tex]\( f(z) = \frac{1}{z^2 + 2z} \)[/tex] for [tex]\( 1 < |z - 1| < 3 \)[/tex], we start with partial fraction decomposition.
First, we can rewrite [tex]\( f(z) \)[/tex] as:
[tex]\[ f(z) = \frac{1}{z^2 + 2z} = \frac{1}{z(z + 2)}. \][/tex]
To decompose [tex]\( \frac{1}{z(z + 2)} \)[/tex] into partial fractions, we write:
[tex]\[ \frac{1}{z(z + 2)} = \frac{A}{z} + \frac{B}{z + 2}. \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z + 2) + Bz. \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = A(2), \][/tex]
[tex]\[ A = \frac{1}{2}. \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = B(-2), \][/tex]
[tex]\[ B = -\frac{1}{2}. \][/tex]
So, the partial fractions decomposition is:
[tex]\[ \frac{1}{z(z + 2)} = \frac{1}{2z} - \frac{1}{2(z + 2)}. \][/tex]
We now need to express this in a form suitable for the Laurent series in the given annulus [tex]\( 1 < |z - 1| < 3 \)[/tex].
The expression [tex]\( \frac{1}{2z} \)[/tex] is already in a suitable form.
For [tex]\( \frac{1}{2(z + 2)} \)[/tex], we note that [tex]\( z + 2 = (z - 1) + 3 \)[/tex].
We will write this expression in terms of [tex]\( \frac{1}{z-1} \)[/tex]:
[tex]\[ \frac{1}{z + 2} = \frac{1}{(z - 1) + 3}. \][/tex]
Using the series expansion for [tex]\( \frac{1}{a+b} \)[/tex], where [tex]\( |b| < |a| \)[/tex],
[tex]\[ \frac{1}{a+b} = \frac{1}{a} \cdot \frac{1}{1 - \left(-\frac{b}{a}\right)} = \frac{1}{a} \sum_{n=0}^\infty \left(-\frac{b}{a}\right)^n. \][/tex]
Here [tex]\( a = 3 \)[/tex] and [tex]\( b = z-1 \)[/tex], so:
[tex]\[ \frac{1}{(z - 1) + 3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{z-1}{3}\right)} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n. \][/tex]
Therefore,
[tex]\[ \frac{1}{z + 2} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n = \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}}. \][/tex]
Now multiply by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ -\frac{1}{2(z + 2)} = -\frac{1}{2} \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2^{(n+1)} \cdot 3}. \][/tex]
Thus, our Laurent Series in the given annulus is:
[tex]\[ \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}}. \][/tex]
It can be written as:
[tex]\[ f(z) = \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{6 \cdot 3^n}. \][/tex]
This is the required Laurent series expansion for the given function in the specified region.
First, we can rewrite [tex]\( f(z) \)[/tex] as:
[tex]\[ f(z) = \frac{1}{z^2 + 2z} = \frac{1}{z(z + 2)}. \][/tex]
To decompose [tex]\( \frac{1}{z(z + 2)} \)[/tex] into partial fractions, we write:
[tex]\[ \frac{1}{z(z + 2)} = \frac{A}{z} + \frac{B}{z + 2}. \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z + 2) + Bz. \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = A(2), \][/tex]
[tex]\[ A = \frac{1}{2}. \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = B(-2), \][/tex]
[tex]\[ B = -\frac{1}{2}. \][/tex]
So, the partial fractions decomposition is:
[tex]\[ \frac{1}{z(z + 2)} = \frac{1}{2z} - \frac{1}{2(z + 2)}. \][/tex]
We now need to express this in a form suitable for the Laurent series in the given annulus [tex]\( 1 < |z - 1| < 3 \)[/tex].
The expression [tex]\( \frac{1}{2z} \)[/tex] is already in a suitable form.
For [tex]\( \frac{1}{2(z + 2)} \)[/tex], we note that [tex]\( z + 2 = (z - 1) + 3 \)[/tex].
We will write this expression in terms of [tex]\( \frac{1}{z-1} \)[/tex]:
[tex]\[ \frac{1}{z + 2} = \frac{1}{(z - 1) + 3}. \][/tex]
Using the series expansion for [tex]\( \frac{1}{a+b} \)[/tex], where [tex]\( |b| < |a| \)[/tex],
[tex]\[ \frac{1}{a+b} = \frac{1}{a} \cdot \frac{1}{1 - \left(-\frac{b}{a}\right)} = \frac{1}{a} \sum_{n=0}^\infty \left(-\frac{b}{a}\right)^n. \][/tex]
Here [tex]\( a = 3 \)[/tex] and [tex]\( b = z-1 \)[/tex], so:
[tex]\[ \frac{1}{(z - 1) + 3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{z-1}{3}\right)} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n. \][/tex]
Therefore,
[tex]\[ \frac{1}{z + 2} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n = \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}}. \][/tex]
Now multiply by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ -\frac{1}{2(z + 2)} = -\frac{1}{2} \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2^{(n+1)} \cdot 3}. \][/tex]
Thus, our Laurent Series in the given annulus is:
[tex]\[ \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}}. \][/tex]
It can be written as:
[tex]\[ f(z) = \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{6 \cdot 3^n}. \][/tex]
This is the required Laurent series expansion for the given function in the specified region.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.