Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the Laurent series expansion of [tex]\( f(z) = \frac{1}{z^2 + 2z} \)[/tex] for [tex]\( 1 < |z - 1| < 3 \)[/tex], we start with partial fraction decomposition.
First, we can rewrite [tex]\( f(z) \)[/tex] as:
[tex]\[ f(z) = \frac{1}{z^2 + 2z} = \frac{1}{z(z + 2)}. \][/tex]
To decompose [tex]\( \frac{1}{z(z + 2)} \)[/tex] into partial fractions, we write:
[tex]\[ \frac{1}{z(z + 2)} = \frac{A}{z} + \frac{B}{z + 2}. \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z + 2) + Bz. \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = A(2), \][/tex]
[tex]\[ A = \frac{1}{2}. \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = B(-2), \][/tex]
[tex]\[ B = -\frac{1}{2}. \][/tex]
So, the partial fractions decomposition is:
[tex]\[ \frac{1}{z(z + 2)} = \frac{1}{2z} - \frac{1}{2(z + 2)}. \][/tex]
We now need to express this in a form suitable for the Laurent series in the given annulus [tex]\( 1 < |z - 1| < 3 \)[/tex].
The expression [tex]\( \frac{1}{2z} \)[/tex] is already in a suitable form.
For [tex]\( \frac{1}{2(z + 2)} \)[/tex], we note that [tex]\( z + 2 = (z - 1) + 3 \)[/tex].
We will write this expression in terms of [tex]\( \frac{1}{z-1} \)[/tex]:
[tex]\[ \frac{1}{z + 2} = \frac{1}{(z - 1) + 3}. \][/tex]
Using the series expansion for [tex]\( \frac{1}{a+b} \)[/tex], where [tex]\( |b| < |a| \)[/tex],
[tex]\[ \frac{1}{a+b} = \frac{1}{a} \cdot \frac{1}{1 - \left(-\frac{b}{a}\right)} = \frac{1}{a} \sum_{n=0}^\infty \left(-\frac{b}{a}\right)^n. \][/tex]
Here [tex]\( a = 3 \)[/tex] and [tex]\( b = z-1 \)[/tex], so:
[tex]\[ \frac{1}{(z - 1) + 3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{z-1}{3}\right)} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n. \][/tex]
Therefore,
[tex]\[ \frac{1}{z + 2} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n = \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}}. \][/tex]
Now multiply by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ -\frac{1}{2(z + 2)} = -\frac{1}{2} \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2^{(n+1)} \cdot 3}. \][/tex]
Thus, our Laurent Series in the given annulus is:
[tex]\[ \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}}. \][/tex]
It can be written as:
[tex]\[ f(z) = \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{6 \cdot 3^n}. \][/tex]
This is the required Laurent series expansion for the given function in the specified region.
First, we can rewrite [tex]\( f(z) \)[/tex] as:
[tex]\[ f(z) = \frac{1}{z^2 + 2z} = \frac{1}{z(z + 2)}. \][/tex]
To decompose [tex]\( \frac{1}{z(z + 2)} \)[/tex] into partial fractions, we write:
[tex]\[ \frac{1}{z(z + 2)} = \frac{A}{z} + \frac{B}{z + 2}. \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z + 2) + Bz. \][/tex]
Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = A(2), \][/tex]
[tex]\[ A = \frac{1}{2}. \][/tex]
Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = B(-2), \][/tex]
[tex]\[ B = -\frac{1}{2}. \][/tex]
So, the partial fractions decomposition is:
[tex]\[ \frac{1}{z(z + 2)} = \frac{1}{2z} - \frac{1}{2(z + 2)}. \][/tex]
We now need to express this in a form suitable for the Laurent series in the given annulus [tex]\( 1 < |z - 1| < 3 \)[/tex].
The expression [tex]\( \frac{1}{2z} \)[/tex] is already in a suitable form.
For [tex]\( \frac{1}{2(z + 2)} \)[/tex], we note that [tex]\( z + 2 = (z - 1) + 3 \)[/tex].
We will write this expression in terms of [tex]\( \frac{1}{z-1} \)[/tex]:
[tex]\[ \frac{1}{z + 2} = \frac{1}{(z - 1) + 3}. \][/tex]
Using the series expansion for [tex]\( \frac{1}{a+b} \)[/tex], where [tex]\( |b| < |a| \)[/tex],
[tex]\[ \frac{1}{a+b} = \frac{1}{a} \cdot \frac{1}{1 - \left(-\frac{b}{a}\right)} = \frac{1}{a} \sum_{n=0}^\infty \left(-\frac{b}{a}\right)^n. \][/tex]
Here [tex]\( a = 3 \)[/tex] and [tex]\( b = z-1 \)[/tex], so:
[tex]\[ \frac{1}{(z - 1) + 3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{z-1}{3}\right)} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n. \][/tex]
Therefore,
[tex]\[ \frac{1}{z + 2} = \frac{1}{3} \sum_{n=0}^\infty \left( \frac{z-1}{3} \right)^n = \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}}. \][/tex]
Now multiply by [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ -\frac{1}{2(z + 2)} = -\frac{1}{2} \sum_{n=0}^\infty \frac{(z-1)^n}{3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}} = - \sum_{n=0}^\infty \frac{(z-1)^n}{2^{(n+1)} \cdot 3}. \][/tex]
Thus, our Laurent Series in the given annulus is:
[tex]\[ \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{2 \cdot 3^{n+1}}. \][/tex]
It can be written as:
[tex]\[ f(z) = \frac{1}{2z} - \sum_{n=0}^\infty \frac{(z-1)^n}{6 \cdot 3^n}. \][/tex]
This is the required Laurent series expansion for the given function in the specified region.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.