Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

3. Find the Laurent Series Expansion of:

a) [tex]f(z) = \frac{1}{z^2 + 2z}[/tex] for [tex]1 \ \textless \ |z - 1| \ \textless \ 3[/tex].

b) [tex]f(z) = z^2 \sin \left(\frac{1}{z^2}\right)[/tex] in the domain [tex]0 \ \textless \ |z| \ \textless \ \infty[/tex].


Sagot :

Certainly! Let's tackle these two problems step by step.

### (a) Laurent Series Expansion of [tex]\( f(z) = \frac{1}{z^2 + 2z} \)[/tex] for [tex]\( 1 < |z-1| < 3 \)[/tex]

First, let's rewrite the function to make the singularities more apparent:
[tex]\[ f(z) = \frac{1}{z(z+2)} \][/tex]

This function has poles at [tex]\( z = 0 \)[/tex] and [tex]\( z = -2 \)[/tex]. To find the Laurent series for [tex]\( 1 < |z - 1| < 3 \)[/tex], we need to express [tex]\( f(z) \)[/tex] in a form that separates the singularities inside and outside the annulus.

We use partial fraction decomposition to rewrite [tex]\( f(z) \)[/tex]:
[tex]\[ f(z) = \frac{1}{z(z+2)} = \frac{A}{z} + \frac{B}{z+2} \][/tex]

Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\[ 1 = A(z+2) + Bz \][/tex]

Setting [tex]\( z = 0 \)[/tex]:
[tex]\[ 1 = 2A \implies A = \frac{1}{2} \][/tex]

Setting [tex]\( z = -2 \)[/tex]:
[tex]\[ 1 = -2B \implies B = -\frac{1}{2} \][/tex]

So the decomposition is:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{2(z+2)} \][/tex]

Now, in the given annulus [tex]\( 1 < |z-1| < 3 \)[/tex], we need to work with the term [tex]\( \frac{1}{2(z+2)} \)[/tex] by shifting the origin to [tex]\( z = 1 \)[/tex] using [tex]\( z+2 = (z-1) + 3 \)[/tex]:
[tex]\[ \frac{1}{z+2} = \frac{1}{(z-1)+3} = \frac{1}{3\left(1 + \frac{z-1}{3}\right)} \][/tex]

Using the geometric series expansion [tex]\( \frac{1}{1+w} = \sum_{n=0}^{\infty} (-w)^n \)[/tex], where [tex]\( w = \frac{z-1}{3} \)[/tex]:
[tex]\[ \frac{1}{z+2} = \frac{1}{3} \sum_{n=0}^{\infty} \left( -\frac{z-1}{3} \right)^n = \frac{1}{3} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \][/tex]

Combining the partial fractions:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{2} \left( \frac{1}{3} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \right) \][/tex]

Simplifying:
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{6} \sum_{n=0}^{\infty} \left( -1 \right)^n \left( \frac{z-1}{3} \right)^n \][/tex]
[tex]\[ f(z) = \frac{1}{2z} - \frac{1}{6} \sum_{n=0}^{\infty} \left( -\frac{z-1}{3} \right)^n \][/tex]

### (b) Laurent Series Expansion of [tex]\( f(z) = z^2 \sin \left( \frac{1}{z^2} \right) \)[/tex] in the domain [tex]\( 0<|z|<\infty \)[/tex]

Firstly, recall the Maclaurin series expansion for [tex]\( \sin x \)[/tex]:
[tex]\[ \sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \][/tex]

Substitute [tex]\( x = \frac{1}{z^2} \)[/tex]:
[tex]\[ \sin \left( \frac{1}{z^2} \right) = \sum_{n=0}^{\infty} \frac{(-1)^n \left( \frac{1}{z^2} \right)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{4n+2}} \][/tex]

Now, multiply by [tex]\( z^2 \)[/tex]:
[tex]\[ f(z) = z^2 \sin \left( \frac{1}{z^2} \right) = z^2 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{4n+2}} \][/tex]
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{z^2}{z^{4n+2}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2-4n-2} \][/tex]
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-4n} \][/tex]

Therefore, the Laurent series of [tex]\( f(z) \)[/tex] in the domain [tex]\( 0 < |z| < \infty \)[/tex] is:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{-4n} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.