Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To show that the equation [tex]\( z = px + qy + \sqrt{p^2 + q^2 + 1} \)[/tex] represents a family of planes, each at a unit distance from the origin, we will follow these steps:
1. Understand the Given Equation:
The equation of the plane given is:
[tex]\[ z = px + qy + \sqrt{p^2 + q^2 + 1} \][/tex]
We need to rewrite this in the standard form of a plane in 3D space: [tex]\( Ax + By + Cz + D = 0 \)[/tex].
2. Rewrite the Equation:
To convert it into the standard form, we rearrange as follows:
[tex]\[ z - px - qy = \sqrt{p^2 + q^2 + 1} \][/tex]
Or equivalently,
[tex]\[ -px - qy + z - \sqrt{p^2 + q^2 + 1} = 0 \][/tex]
Here, we identify the coefficients [tex]\( A, B, C, \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ A = -p, \quad B = -q, \quad C = 1, \quad D = -\sqrt{p^2 + q^2 + 1} \][/tex]
3. Distance from the Origin:
To determine the distance of the plane from the origin, we use the formula for the distance [tex]\( D \)[/tex] from a point [tex]\( (x_0, y_0, z_0) \)[/tex] (in this case, the origin [tex]\((0, 0, 0)) \)[/tex] to the plane [tex]\( Ax + By + Cz + D = 0 \)[/tex]:
[tex]\[ \text{Distance} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \][/tex]
Plugging in the values [tex]\( A = -p, B = -q, C = 1, \)[/tex] and [tex]\( D = -\sqrt{p^2 + q^2 + 1} \)[/tex], we get:
[tex]\[ \text{Distance} = \frac{|- \sqrt{p^2 + q^2 + 1}|}{\sqrt{(-p)^2 + (-q)^2 + 1^2}} \][/tex]
4. Simplify the Expression:
First, simplify the numerator:
[tex]\[ |-\sqrt{p^2 + q^2 + 1}| = \sqrt{p^2 + q^2 + 1} \][/tex]
Now, simplify the denominator:
[tex]\[ \sqrt{(-p)^2 + (-q)^2 + 1^2} = \sqrt{p^2 + q^2 + 1} \][/tex]
Therefore, the distance expression becomes:
[tex]\[ \text{Distance} = \frac{\sqrt{p^2 + q^2 + 1}}{\sqrt{p^2 + q^2 + 1}} \][/tex]
5. Calculate the Final Distance:
By simplifying the fraction, we get:
[tex]\[ \text{Distance} = \frac{\sqrt{p^2 + q^2 + 1}}{\sqrt{p^2 + q^2 + 1}} = 1 \][/tex]
Thus, the distance from the origin to the plane described by the equation [tex]\( z = px + qy + \sqrt{p^2 + q^2 + 1} \)[/tex] is always 1 unit. Hence, the given equation represents a family of planes, each of which is at a unit distance from the origin.
1. Understand the Given Equation:
The equation of the plane given is:
[tex]\[ z = px + qy + \sqrt{p^2 + q^2 + 1} \][/tex]
We need to rewrite this in the standard form of a plane in 3D space: [tex]\( Ax + By + Cz + D = 0 \)[/tex].
2. Rewrite the Equation:
To convert it into the standard form, we rearrange as follows:
[tex]\[ z - px - qy = \sqrt{p^2 + q^2 + 1} \][/tex]
Or equivalently,
[tex]\[ -px - qy + z - \sqrt{p^2 + q^2 + 1} = 0 \][/tex]
Here, we identify the coefficients [tex]\( A, B, C, \)[/tex] and [tex]\( D \)[/tex]:
[tex]\[ A = -p, \quad B = -q, \quad C = 1, \quad D = -\sqrt{p^2 + q^2 + 1} \][/tex]
3. Distance from the Origin:
To determine the distance of the plane from the origin, we use the formula for the distance [tex]\( D \)[/tex] from a point [tex]\( (x_0, y_0, z_0) \)[/tex] (in this case, the origin [tex]\((0, 0, 0)) \)[/tex] to the plane [tex]\( Ax + By + Cz + D = 0 \)[/tex]:
[tex]\[ \text{Distance} = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \][/tex]
Plugging in the values [tex]\( A = -p, B = -q, C = 1, \)[/tex] and [tex]\( D = -\sqrt{p^2 + q^2 + 1} \)[/tex], we get:
[tex]\[ \text{Distance} = \frac{|- \sqrt{p^2 + q^2 + 1}|}{\sqrt{(-p)^2 + (-q)^2 + 1^2}} \][/tex]
4. Simplify the Expression:
First, simplify the numerator:
[tex]\[ |-\sqrt{p^2 + q^2 + 1}| = \sqrt{p^2 + q^2 + 1} \][/tex]
Now, simplify the denominator:
[tex]\[ \sqrt{(-p)^2 + (-q)^2 + 1^2} = \sqrt{p^2 + q^2 + 1} \][/tex]
Therefore, the distance expression becomes:
[tex]\[ \text{Distance} = \frac{\sqrt{p^2 + q^2 + 1}}{\sqrt{p^2 + q^2 + 1}} \][/tex]
5. Calculate the Final Distance:
By simplifying the fraction, we get:
[tex]\[ \text{Distance} = \frac{\sqrt{p^2 + q^2 + 1}}{\sqrt{p^2 + q^2 + 1}} = 1 \][/tex]
Thus, the distance from the origin to the plane described by the equation [tex]\( z = px + qy + \sqrt{p^2 + q^2 + 1} \)[/tex] is always 1 unit. Hence, the given equation represents a family of planes, each of which is at a unit distance from the origin.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.