At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the given piecewise function:
[tex]\[ f(x) = \begin{cases} 6 & \text{if } x < -4 \\ -10 + x^2 & \text{if } -4 \leq x < 4 \\ 2x - 2 & \text{if } x \geq 4 \end{cases} \][/tex]
### Graphing the Function
Let's graph the function by considering each piece separately.
#### 1. For [tex]\( x < -4 \)[/tex]:
The function [tex]\( f(x) = 6 \)[/tex] is a horizontal line at [tex]\( y = 6 \)[/tex] for all [tex]\( x < -4 \)[/tex].
#### 2. For [tex]\( -4 \leq x < 4 \)[/tex]:
The function [tex]\( f(x) = -10 + x^2 \)[/tex] is a parabola that opens upwards (since the coefficient of [tex]\( x^2 \)[/tex] is positive). It starts from [tex]\( x = -4 \)[/tex] and ends at [tex]\( x = 4 \)[/tex] without including 4.
#### 3. For [tex]\( x \geq 4 \)[/tex]:
The function [tex]\( f(x) = 2x - 2 \)[/tex] is a linear equation with a slope of 2 and a y-intercept of -2. It starts from [tex]\( x = 4 \)[/tex] and goes to infinity.
### Determining Continuity
To determine the continuity of the function at [tex]\( x = -4 \)[/tex] and [tex]\( x = 4 \)[/tex], we need to check if the left-hand limit, right-hand limit, and the value of the function at these points are all equal.
#### 1. At [tex]\( x = -4 \)[/tex]:
- Left-hand limit as [tex]\( x \to -4^- \)[/tex]:
[tex]\[ \lim_{{x \to -4^-}} f(x) = 6 \][/tex]
Since [tex]\( f(x) = 6 \)[/tex] for [tex]\( x < -4 \)[/tex].
- Right-hand limit as [tex]\( x \to -4^+ \)[/tex]:
[tex]\[ \lim_{{x \to -4^+}} f(x) = -10 + (-4)^2 = -10 + 16 = 6 \][/tex]
Since [tex]\( f(x) = -10 + x^2 \)[/tex] for [tex]\( -4 \leq x < 4 \)[/tex].
- Value at [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = -10 + (-4)^2 = -10 + 16 = 6 \][/tex]
Since the left-hand limit, right-hand limit, and the actual value of the function at [tex]\( x = -4 \)[/tex] are all equal to 6, the function is continuous at [tex]\( x = -4 \)[/tex].
#### 2. At [tex]\( x = 4 \)[/tex]:
- Left-hand limit as [tex]\( x \to 4^- \)[/tex]:
[tex]\[ \lim_{{x \to 4^-}} f(x) = -10 + 4^2 = -10 + 16 = 6 \][/tex]
Since [tex]\( f(x) = -10 + x^2 \)[/tex] for [tex]\( -4 \leq x < 4 \)[/tex].
- Right-hand limit as [tex]\( x \to 4^+ \)[/tex]:
[tex]\[ \lim_{{x \to 4^+}} f(x) = 2 \cdot 4 - 2 = 8 - 2 = 6 \][/tex]
Since [tex]\( f(x) = 2x - 2 \)[/tex] for [tex]\( x \geq 4 \)[/tex].
- Value at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 2 \cdot 4 - 2 = 8 - 2 = 6 \][/tex]
Since the left-hand limit, right-hand limit, and the actual value of the function at [tex]\( x = 4 \)[/tex] are all equal to 6, the function is continuous at [tex]\( x = 4 \)[/tex].
### Conclusion
The function [tex]\( f \)[/tex] is continuous for all [tex]\( x \)[/tex] because it is continuous at both critical points [tex]\( x = -4 \)[/tex] and [tex]\( x = 4 \)[/tex], and it is composed of continuous functions on their respective intervals.
### Graph of [tex]\( f(x) \)[/tex]:
Here is a rough sketch of the graph of [tex]\( f(x) \)[/tex]:
- For [tex]\( x < -4 \)[/tex], the graph is a horizontal line at [tex]\( y = 6 \)[/tex].
- For [tex]\( -4 \leq x < 4 \)[/tex], the graph is a parabola opening upwards, starting at [tex]\( ( -4,6) \)[/tex] and ending at [tex]\( (4, 6) \)[/tex].
- For [tex]\( x \geq 4 \)[/tex], the graph is a line with slope 2, starting from [tex]\( (4, 6) \)[/tex].
This combined graph represents a continuous function across the entire real line.
[tex]\[ f(x) = \begin{cases} 6 & \text{if } x < -4 \\ -10 + x^2 & \text{if } -4 \leq x < 4 \\ 2x - 2 & \text{if } x \geq 4 \end{cases} \][/tex]
### Graphing the Function
Let's graph the function by considering each piece separately.
#### 1. For [tex]\( x < -4 \)[/tex]:
The function [tex]\( f(x) = 6 \)[/tex] is a horizontal line at [tex]\( y = 6 \)[/tex] for all [tex]\( x < -4 \)[/tex].
#### 2. For [tex]\( -4 \leq x < 4 \)[/tex]:
The function [tex]\( f(x) = -10 + x^2 \)[/tex] is a parabola that opens upwards (since the coefficient of [tex]\( x^2 \)[/tex] is positive). It starts from [tex]\( x = -4 \)[/tex] and ends at [tex]\( x = 4 \)[/tex] without including 4.
#### 3. For [tex]\( x \geq 4 \)[/tex]:
The function [tex]\( f(x) = 2x - 2 \)[/tex] is a linear equation with a slope of 2 and a y-intercept of -2. It starts from [tex]\( x = 4 \)[/tex] and goes to infinity.
### Determining Continuity
To determine the continuity of the function at [tex]\( x = -4 \)[/tex] and [tex]\( x = 4 \)[/tex], we need to check if the left-hand limit, right-hand limit, and the value of the function at these points are all equal.
#### 1. At [tex]\( x = -4 \)[/tex]:
- Left-hand limit as [tex]\( x \to -4^- \)[/tex]:
[tex]\[ \lim_{{x \to -4^-}} f(x) = 6 \][/tex]
Since [tex]\( f(x) = 6 \)[/tex] for [tex]\( x < -4 \)[/tex].
- Right-hand limit as [tex]\( x \to -4^+ \)[/tex]:
[tex]\[ \lim_{{x \to -4^+}} f(x) = -10 + (-4)^2 = -10 + 16 = 6 \][/tex]
Since [tex]\( f(x) = -10 + x^2 \)[/tex] for [tex]\( -4 \leq x < 4 \)[/tex].
- Value at [tex]\( x = -4 \)[/tex]:
[tex]\[ f(-4) = -10 + (-4)^2 = -10 + 16 = 6 \][/tex]
Since the left-hand limit, right-hand limit, and the actual value of the function at [tex]\( x = -4 \)[/tex] are all equal to 6, the function is continuous at [tex]\( x = -4 \)[/tex].
#### 2. At [tex]\( x = 4 \)[/tex]:
- Left-hand limit as [tex]\( x \to 4^- \)[/tex]:
[tex]\[ \lim_{{x \to 4^-}} f(x) = -10 + 4^2 = -10 + 16 = 6 \][/tex]
Since [tex]\( f(x) = -10 + x^2 \)[/tex] for [tex]\( -4 \leq x < 4 \)[/tex].
- Right-hand limit as [tex]\( x \to 4^+ \)[/tex]:
[tex]\[ \lim_{{x \to 4^+}} f(x) = 2 \cdot 4 - 2 = 8 - 2 = 6 \][/tex]
Since [tex]\( f(x) = 2x - 2 \)[/tex] for [tex]\( x \geq 4 \)[/tex].
- Value at [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 2 \cdot 4 - 2 = 8 - 2 = 6 \][/tex]
Since the left-hand limit, right-hand limit, and the actual value of the function at [tex]\( x = 4 \)[/tex] are all equal to 6, the function is continuous at [tex]\( x = 4 \)[/tex].
### Conclusion
The function [tex]\( f \)[/tex] is continuous for all [tex]\( x \)[/tex] because it is continuous at both critical points [tex]\( x = -4 \)[/tex] and [tex]\( x = 4 \)[/tex], and it is composed of continuous functions on their respective intervals.
### Graph of [tex]\( f(x) \)[/tex]:
Here is a rough sketch of the graph of [tex]\( f(x) \)[/tex]:
- For [tex]\( x < -4 \)[/tex], the graph is a horizontal line at [tex]\( y = 6 \)[/tex].
- For [tex]\( -4 \leq x < 4 \)[/tex], the graph is a parabola opening upwards, starting at [tex]\( ( -4,6) \)[/tex] and ending at [tex]\( (4, 6) \)[/tex].
- For [tex]\( x \geq 4 \)[/tex], the graph is a line with slope 2, starting from [tex]\( (4, 6) \)[/tex].
This combined graph represents a continuous function across the entire real line.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.