At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's walk through the process step-by-step in detail.
We start with the general quadratic equation:
1. Statement: [tex]\( ax^2 + bx + c = 0 \)[/tex]
Reason: Given
2. Statement: [tex]\( ax^2 + bx = -c \)[/tex]
Reason: Subtract [tex]\( c \)[/tex] from both sides of the equation
3. Statement: [tex]\( x^2 + \frac{b}{a}x = -\frac{c}{a} \)[/tex]
Reason: Divide both sides of the equation by [tex]\( a \)[/tex]
4. Statement: [tex]\( x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \)[/tex]
Reason: Complete the square by adding [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides
5. Statement: [tex]\( x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \)[/tex]
Reason: Square [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] on the right side of the equation
6. Statement: [tex]\( x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \)[/tex]
Reason: Find a common denominator on the right side of the equation
7. Statement: [tex]\( x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \)[/tex]
Reason: Add the fractions together on the right side of the equation
8. Statement: [tex]\( \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \)[/tex]
Reason: Rewrite the left side as a square of the binomial
By following these steps, we transform the quadratic equation into a form that allows us to recognize the left side as a perfect square trinomial, making it easier to further solve the equation using the quadratic formula.
We start with the general quadratic equation:
1. Statement: [tex]\( ax^2 + bx + c = 0 \)[/tex]
Reason: Given
2. Statement: [tex]\( ax^2 + bx = -c \)[/tex]
Reason: Subtract [tex]\( c \)[/tex] from both sides of the equation
3. Statement: [tex]\( x^2 + \frac{b}{a}x = -\frac{c}{a} \)[/tex]
Reason: Divide both sides of the equation by [tex]\( a \)[/tex]
4. Statement: [tex]\( x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2 \)[/tex]
Reason: Complete the square by adding [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] to both sides
5. Statement: [tex]\( x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} \)[/tex]
Reason: Square [tex]\(\left(\frac{b}{2a}\right)^2\)[/tex] on the right side of the equation
6. Statement: [tex]\( x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \)[/tex]
Reason: Find a common denominator on the right side of the equation
7. Statement: [tex]\( x^2 + \frac{b}{a} x + \left(\frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \)[/tex]
Reason: Add the fractions together on the right side of the equation
8. Statement: [tex]\( \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \)[/tex]
Reason: Rewrite the left side as a square of the binomial
By following these steps, we transform the quadratic equation into a form that allows us to recognize the left side as a perfect square trinomial, making it easier to further solve the equation using the quadratic formula.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.