Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To understand the transition from Step 1 to Step 2, let's carefully examine the operations performed:
Step 1:
[tex]\[ -c = a x^2 + b x \][/tex]
In Step 1, we have a quadratic equation set up in a standard form, where the right-hand side is a polynomial expression.
Step 2:
[tex]\[ -c = a\left(x^2 + \frac{b}{a} x\right) \][/tex]
For Step 2, let's rewrite the equation to understand the transformation. The expression [tex]\( a x^2 + b x \)[/tex] is factored, with [tex]\( a \)[/tex] being factored out from the terms involving [tex]\( x \)[/tex].
The factored form changes as follows:
[tex]\[ a x^2 + b x = a \left( x^2 + \frac{b}{a} x \right) \][/tex]
Here, each term in the polynomial [tex]\( a x^2 + b x \)[/tex] is divided by [tex]\( a \)[/tex]:
- From [tex]\( a x^2 \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( x^2 \)[/tex].
- From [tex]\( b x \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( \frac{b}{a} x \)[/tex].
Thus, pulling the factor [tex]\( a \)[/tex] out and placing it in front of the parenthesis, we get:
[tex]\[ -c = a \left(x^2 + \frac{b}{a} x \right) \][/tex]
This operation is specifically the process of factoring the common factor [tex]\( a \)[/tex] out of the terms involving [tex]\( x \)[/tex].
Therefore, the best explanation or justification for Step 2 is:
Factoring the binomial.
This approach simplifies the equation and prepares it for further steps, such as completing the square or deriving the quadratic formula.
Step 1:
[tex]\[ -c = a x^2 + b x \][/tex]
In Step 1, we have a quadratic equation set up in a standard form, where the right-hand side is a polynomial expression.
Step 2:
[tex]\[ -c = a\left(x^2 + \frac{b}{a} x\right) \][/tex]
For Step 2, let's rewrite the equation to understand the transformation. The expression [tex]\( a x^2 + b x \)[/tex] is factored, with [tex]\( a \)[/tex] being factored out from the terms involving [tex]\( x \)[/tex].
The factored form changes as follows:
[tex]\[ a x^2 + b x = a \left( x^2 + \frac{b}{a} x \right) \][/tex]
Here, each term in the polynomial [tex]\( a x^2 + b x \)[/tex] is divided by [tex]\( a \)[/tex]:
- From [tex]\( a x^2 \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( x^2 \)[/tex].
- From [tex]\( b x \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( \frac{b}{a} x \)[/tex].
Thus, pulling the factor [tex]\( a \)[/tex] out and placing it in front of the parenthesis, we get:
[tex]\[ -c = a \left(x^2 + \frac{b}{a} x \right) \][/tex]
This operation is specifically the process of factoring the common factor [tex]\( a \)[/tex] out of the terms involving [tex]\( x \)[/tex].
Therefore, the best explanation or justification for Step 2 is:
Factoring the binomial.
This approach simplifies the equation and prepares it for further steps, such as completing the square or deriving the quadratic formula.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.