Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To understand the transition from Step 1 to Step 2, let's carefully examine the operations performed:
Step 1:
[tex]\[ -c = a x^2 + b x \][/tex]
In Step 1, we have a quadratic equation set up in a standard form, where the right-hand side is a polynomial expression.
Step 2:
[tex]\[ -c = a\left(x^2 + \frac{b}{a} x\right) \][/tex]
For Step 2, let's rewrite the equation to understand the transformation. The expression [tex]\( a x^2 + b x \)[/tex] is factored, with [tex]\( a \)[/tex] being factored out from the terms involving [tex]\( x \)[/tex].
The factored form changes as follows:
[tex]\[ a x^2 + b x = a \left( x^2 + \frac{b}{a} x \right) \][/tex]
Here, each term in the polynomial [tex]\( a x^2 + b x \)[/tex] is divided by [tex]\( a \)[/tex]:
- From [tex]\( a x^2 \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( x^2 \)[/tex].
- From [tex]\( b x \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( \frac{b}{a} x \)[/tex].
Thus, pulling the factor [tex]\( a \)[/tex] out and placing it in front of the parenthesis, we get:
[tex]\[ -c = a \left(x^2 + \frac{b}{a} x \right) \][/tex]
This operation is specifically the process of factoring the common factor [tex]\( a \)[/tex] out of the terms involving [tex]\( x \)[/tex].
Therefore, the best explanation or justification for Step 2 is:
Factoring the binomial.
This approach simplifies the equation and prepares it for further steps, such as completing the square or deriving the quadratic formula.
Step 1:
[tex]\[ -c = a x^2 + b x \][/tex]
In Step 1, we have a quadratic equation set up in a standard form, where the right-hand side is a polynomial expression.
Step 2:
[tex]\[ -c = a\left(x^2 + \frac{b}{a} x\right) \][/tex]
For Step 2, let's rewrite the equation to understand the transformation. The expression [tex]\( a x^2 + b x \)[/tex] is factored, with [tex]\( a \)[/tex] being factored out from the terms involving [tex]\( x \)[/tex].
The factored form changes as follows:
[tex]\[ a x^2 + b x = a \left( x^2 + \frac{b}{a} x \right) \][/tex]
Here, each term in the polynomial [tex]\( a x^2 + b x \)[/tex] is divided by [tex]\( a \)[/tex]:
- From [tex]\( a x^2 \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( x^2 \)[/tex].
- From [tex]\( b x \)[/tex], when divided by [tex]\( a \)[/tex], we get [tex]\( \frac{b}{a} x \)[/tex].
Thus, pulling the factor [tex]\( a \)[/tex] out and placing it in front of the parenthesis, we get:
[tex]\[ -c = a \left(x^2 + \frac{b}{a} x \right) \][/tex]
This operation is specifically the process of factoring the common factor [tex]\( a \)[/tex] out of the terms involving [tex]\( x \)[/tex].
Therefore, the best explanation or justification for Step 2 is:
Factoring the binomial.
This approach simplifies the equation and prepares it for further steps, such as completing the square or deriving the quadratic formula.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.