Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem using trigonometry.
1. Identify the given information:
- Length of the ladder: [tex]\( 12 \)[/tex] feet.
- Angle between the ladder and the ground: [tex]\( 45 \)[/tex] degrees.
2. Recognize that we need to find the height [tex]\( h \)[/tex] of the ladder up against the building. This height represents the vertical leg of a right triangle formed by the ladder, the building, and the distance from the base of the ladder to the building.
3. Use the sine function:
The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side (height [tex]\( h \)[/tex]) to the hypotenuse (length of the ladder [tex]\( L \)[/tex]).
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
Here, [tex]\(\theta = 45^\circ\)[/tex], the opposite side is [tex]\(h\)[/tex], and the hypotenuse is [tex]\(12\)[/tex] feet.
4. Set up the equation using the sine of [tex]\( 45^\circ \)[/tex]:
[tex]\[ \sin(45^\circ) = \frac{h}{12} \][/tex]
We know from trigonometric values that:
[tex]\[ \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707 \][/tex]
5. Substitute [tex]\(\sin(45^\circ)\)[/tex] in the equation:
[tex]\[ \frac{\sqrt{2}}{2} = \frac{h}{12} \][/tex]
6. Solve for [tex]\( h \)[/tex]:
[tex]\[ h = 12 \times \frac{\sqrt{2}}{2} \][/tex]
Simplify:
[tex]\[ h = 12 \times 0.707 \approx 12 \times \frac{\sqrt{2}}{2} \][/tex]
Simplifying further, we get:
[tex]\[ h = 12 \times \frac{\sqrt{2}}{2} = 6 \times \sqrt{2} \][/tex]
Hence, the height that the ladder reaches up the building is:
[tex]\[ \boxed{8.48528137423857 \text{ feet}} \][/tex]
However, since this height [tex]\( 8.48528137423857 \)[/tex] feet matches the calculation [tex]\( 6 \sqrt{2} \)[/tex] feet. Therefore the correct answer matching our choices is:
D. [tex]\( 6 \sqrt{2} \)[/tex] feet
1. Identify the given information:
- Length of the ladder: [tex]\( 12 \)[/tex] feet.
- Angle between the ladder and the ground: [tex]\( 45 \)[/tex] degrees.
2. Recognize that we need to find the height [tex]\( h \)[/tex] of the ladder up against the building. This height represents the vertical leg of a right triangle formed by the ladder, the building, and the distance from the base of the ladder to the building.
3. Use the sine function:
The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side (height [tex]\( h \)[/tex]) to the hypotenuse (length of the ladder [tex]\( L \)[/tex]).
[tex]\[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \][/tex]
Here, [tex]\(\theta = 45^\circ\)[/tex], the opposite side is [tex]\(h\)[/tex], and the hypotenuse is [tex]\(12\)[/tex] feet.
4. Set up the equation using the sine of [tex]\( 45^\circ \)[/tex]:
[tex]\[ \sin(45^\circ) = \frac{h}{12} \][/tex]
We know from trigonometric values that:
[tex]\[ \sin(45^\circ) = \frac{\sqrt{2}}{2} \approx 0.707 \][/tex]
5. Substitute [tex]\(\sin(45^\circ)\)[/tex] in the equation:
[tex]\[ \frac{\sqrt{2}}{2} = \frac{h}{12} \][/tex]
6. Solve for [tex]\( h \)[/tex]:
[tex]\[ h = 12 \times \frac{\sqrt{2}}{2} \][/tex]
Simplify:
[tex]\[ h = 12 \times 0.707 \approx 12 \times \frac{\sqrt{2}}{2} \][/tex]
Simplifying further, we get:
[tex]\[ h = 12 \times \frac{\sqrt{2}}{2} = 6 \times \sqrt{2} \][/tex]
Hence, the height that the ladder reaches up the building is:
[tex]\[ \boxed{8.48528137423857 \text{ feet}} \][/tex]
However, since this height [tex]\( 8.48528137423857 \)[/tex] feet matches the calculation [tex]\( 6 \sqrt{2} \)[/tex] feet. Therefore the correct answer matching our choices is:
D. [tex]\( 6 \sqrt{2} \)[/tex] feet
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.