Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which feature of the graph of [tex]\( g(x) \)[/tex] is different from the graph of [tex]\( f(x) \)[/tex], we need to analyze each function:
1. Amplitude: The amplitude of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by the absolute value of the coefficient of the sine function, [tex]\( |A| \)[/tex]. Both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have an amplitude of [tex]\( |5| = 5 \)[/tex]. Therefore, the amplitude is the same for both functions.
2. Vertical Shift: The vertical shift of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( D \)[/tex]. Both functions have a vertical shift of [tex]\( -9 \)[/tex]. Therefore, the vertical shift is the same for both functions.
3. Period: The period of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( \frac{2\pi}{|B|} \)[/tex]. For both functions, [tex]\( B = 2 \)[/tex], so the period for both is [tex]\( \frac{2\pi}{2} = \pi \)[/tex]. Therefore, the period is the same for both functions.
4. Phase Shift: The phase shift is determined by the expression [tex]\( \frac{C}{B} \)[/tex].
- For [tex]\( f(x) = 5 \sin\left(2x - \frac{\pi}{3}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{3}}{2} = -\frac{\pi}{6} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{3} \)[/tex].
- For [tex]\( g(x) = 5 \sin\left(2x - \frac{\pi}{8}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{8}}{2} = -\frac{\pi}{16} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{8} \)[/tex].
Given that for [tex]\( f(x) \)[/tex] the phase shift is [tex]\( -1.0471975511965976 \)[/tex] and for [tex]\( g(x) \)[/tex] it is [tex]\( -0.39269908169872414 \)[/tex], these numbers confirm the different phase shifts.
Thus, the feature of the graph of [tex]\( g(x) \)[/tex] that is different from the graph of [tex]\( f(x) \)[/tex] is the phase shift.
1. Amplitude: The amplitude of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by the absolute value of the coefficient of the sine function, [tex]\( |A| \)[/tex]. Both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have an amplitude of [tex]\( |5| = 5 \)[/tex]. Therefore, the amplitude is the same for both functions.
2. Vertical Shift: The vertical shift of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( D \)[/tex]. Both functions have a vertical shift of [tex]\( -9 \)[/tex]. Therefore, the vertical shift is the same for both functions.
3. Period: The period of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( \frac{2\pi}{|B|} \)[/tex]. For both functions, [tex]\( B = 2 \)[/tex], so the period for both is [tex]\( \frac{2\pi}{2} = \pi \)[/tex]. Therefore, the period is the same for both functions.
4. Phase Shift: The phase shift is determined by the expression [tex]\( \frac{C}{B} \)[/tex].
- For [tex]\( f(x) = 5 \sin\left(2x - \frac{\pi}{3}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{3}}{2} = -\frac{\pi}{6} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{3} \)[/tex].
- For [tex]\( g(x) = 5 \sin\left(2x - \frac{\pi}{8}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{8}}{2} = -\frac{\pi}{16} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{8} \)[/tex].
Given that for [tex]\( f(x) \)[/tex] the phase shift is [tex]\( -1.0471975511965976 \)[/tex] and for [tex]\( g(x) \)[/tex] it is [tex]\( -0.39269908169872414 \)[/tex], these numbers confirm the different phase shifts.
Thus, the feature of the graph of [tex]\( g(x) \)[/tex] that is different from the graph of [tex]\( f(x) \)[/tex] is the phase shift.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.