Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which feature of the graph of [tex]\( g(x) \)[/tex] is different from the graph of [tex]\( f(x) \)[/tex], we need to analyze each function:
1. Amplitude: The amplitude of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by the absolute value of the coefficient of the sine function, [tex]\( |A| \)[/tex]. Both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have an amplitude of [tex]\( |5| = 5 \)[/tex]. Therefore, the amplitude is the same for both functions.
2. Vertical Shift: The vertical shift of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( D \)[/tex]. Both functions have a vertical shift of [tex]\( -9 \)[/tex]. Therefore, the vertical shift is the same for both functions.
3. Period: The period of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( \frac{2\pi}{|B|} \)[/tex]. For both functions, [tex]\( B = 2 \)[/tex], so the period for both is [tex]\( \frac{2\pi}{2} = \pi \)[/tex]. Therefore, the period is the same for both functions.
4. Phase Shift: The phase shift is determined by the expression [tex]\( \frac{C}{B} \)[/tex].
- For [tex]\( f(x) = 5 \sin\left(2x - \frac{\pi}{3}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{3}}{2} = -\frac{\pi}{6} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{3} \)[/tex].
- For [tex]\( g(x) = 5 \sin\left(2x - \frac{\pi}{8}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{8}}{2} = -\frac{\pi}{16} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{8} \)[/tex].
Given that for [tex]\( f(x) \)[/tex] the phase shift is [tex]\( -1.0471975511965976 \)[/tex] and for [tex]\( g(x) \)[/tex] it is [tex]\( -0.39269908169872414 \)[/tex], these numbers confirm the different phase shifts.
Thus, the feature of the graph of [tex]\( g(x) \)[/tex] that is different from the graph of [tex]\( f(x) \)[/tex] is the phase shift.
1. Amplitude: The amplitude of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by the absolute value of the coefficient of the sine function, [tex]\( |A| \)[/tex]. Both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have an amplitude of [tex]\( |5| = 5 \)[/tex]. Therefore, the amplitude is the same for both functions.
2. Vertical Shift: The vertical shift of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( D \)[/tex]. Both functions have a vertical shift of [tex]\( -9 \)[/tex]. Therefore, the vertical shift is the same for both functions.
3. Period: The period of a sinusoidal function [tex]\( A \sin(Bx - C) + D \)[/tex] is given by [tex]\( \frac{2\pi}{|B|} \)[/tex]. For both functions, [tex]\( B = 2 \)[/tex], so the period for both is [tex]\( \frac{2\pi}{2} = \pi \)[/tex]. Therefore, the period is the same for both functions.
4. Phase Shift: The phase shift is determined by the expression [tex]\( \frac{C}{B} \)[/tex].
- For [tex]\( f(x) = 5 \sin\left(2x - \frac{\pi}{3}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{3}}{2} = -\frac{\pi}{6} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{3} \)[/tex].
- For [tex]\( g(x) = 5 \sin\left(2x - \frac{\pi}{8}\right) - 9 \)[/tex], the phase shift is [tex]\( \frac{-\frac{\pi}{8}}{2} = -\frac{\pi}{16} \)[/tex]. However, without simplifying, it can be seen as [tex]\( -\frac{\pi}{8} \)[/tex].
Given that for [tex]\( f(x) \)[/tex] the phase shift is [tex]\( -1.0471975511965976 \)[/tex] and for [tex]\( g(x) \)[/tex] it is [tex]\( -0.39269908169872414 \)[/tex], these numbers confirm the different phase shifts.
Thus, the feature of the graph of [tex]\( g(x) \)[/tex] that is different from the graph of [tex]\( f(x) \)[/tex] is the phase shift.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.