Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Express [tex][tex]$x^2 + 12x$[/tex][/tex] in the form [tex][tex]$(x + a)^2 + b$[/tex][/tex], where [tex]a[/tex] and [tex]b[/tex] are numbers.

What are the values of [tex]a[/tex] and [tex]b[/tex]?

Sagot :

Sure, let's express the quadratic expression [tex]\(x^2 + 12x\)[/tex] in the form [tex]\((x + a)^2 + b\)[/tex].

### Step-by-Step Solution:

1. Start with the given expression:
[tex]\[ x^2 + 12x \][/tex]

2. Identify the coefficient of [tex]\(x\)[/tex]:
The coefficient of [tex]\(x\)[/tex] is 12.

3. Divide the coefficient of [tex]\(x\)[/tex] by 2:
[tex]\[ a = \frac{12}{2} = 6 \][/tex]
Thus, [tex]\(a = 6\)[/tex].

4. Square the result from step 3:
[tex]\[ (6)^2 = 36 \][/tex]

5. Add and subtract this square within the expression:
[tex]\[ x^2 + 12x = x^2 + 12x + 36 - 36 \][/tex]

6. Rewrite the expression as a perfect square and a constant term:
[tex]\[ x^2 + 12x + 36 - 36 = (x + 6)^2 - 36 \][/tex]

Thus, we have expressed [tex]\(x^2 + 12x\)[/tex] in the form [tex]\((x + a)^2 + b\)[/tex], where:

[tex]\[ (x + 6)^2 + (-36) \][/tex]

### Conclusion:

From the above steps, we can see that the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:

[tex]\[ a = 6 \quad \text{and} \quad b = -36 \][/tex]