At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the range of the function [tex]\( f(x) = \frac{1}{7}(9)^x \)[/tex], follow these steps:
1. Understand the Form of the Function: The given function is an exponential function with the form [tex]\( f(x) = \frac{1}{7} \cdot 9^x \)[/tex]. Here, [tex]\( 9^x \)[/tex] is an exponential expression where the base is 9 and the exponent is [tex]\( x \)[/tex]. The coefficient [tex]\( \frac{1}{7} \)[/tex] scales the output of [tex]\( 9^x \)[/tex].
2. Exponential Functions Overview: For an exponential function [tex]\( a \cdot b^x \)[/tex] where [tex]\( b > 1 \)[/tex] and [tex]\( a > 0 \)[/tex], the range is all positive real numbers. This is because [tex]\( b^x \)[/tex] can take any positive value as [tex]\( x \)[/tex] varies over all real numbers. Thus, [tex]\( a \cdot b^x \)[/tex] will also take any positive value since [tex]\( a \)[/tex] is a positive constant.
3. Analyze the Base and Coefficient: In our function, the base [tex]\( b = 9 \)[/tex] is greater than 1, and the coefficient [tex]\( a = \frac{1}{7} \)[/tex] is positive. This means that as [tex]\( x \)[/tex] varies over all real numbers, [tex]\( 9^x \)[/tex] will produce all positive real numbers. Multiplying these values by [tex]\( \frac{1}{7} \)[/tex] will still yield all positive real numbers because a positive constant times a positive number is positive.
4. Range Determination: Since [tex]\( \frac{1}{7} \cdot 9^x \)[/tex] results in all positive values for any real number [tex]\( x \)[/tex], the range of the function [tex]\( f(x) \)[/tex] is all positive real numbers.
Therefore, the range of the function [tex]\( f(x) = \frac{1}{7}(9)^x \)[/tex] is:
all real numbers greater than 0.
Hence, the correct option is:
- all real numbers greater than 0
1. Understand the Form of the Function: The given function is an exponential function with the form [tex]\( f(x) = \frac{1}{7} \cdot 9^x \)[/tex]. Here, [tex]\( 9^x \)[/tex] is an exponential expression where the base is 9 and the exponent is [tex]\( x \)[/tex]. The coefficient [tex]\( \frac{1}{7} \)[/tex] scales the output of [tex]\( 9^x \)[/tex].
2. Exponential Functions Overview: For an exponential function [tex]\( a \cdot b^x \)[/tex] where [tex]\( b > 1 \)[/tex] and [tex]\( a > 0 \)[/tex], the range is all positive real numbers. This is because [tex]\( b^x \)[/tex] can take any positive value as [tex]\( x \)[/tex] varies over all real numbers. Thus, [tex]\( a \cdot b^x \)[/tex] will also take any positive value since [tex]\( a \)[/tex] is a positive constant.
3. Analyze the Base and Coefficient: In our function, the base [tex]\( b = 9 \)[/tex] is greater than 1, and the coefficient [tex]\( a = \frac{1}{7} \)[/tex] is positive. This means that as [tex]\( x \)[/tex] varies over all real numbers, [tex]\( 9^x \)[/tex] will produce all positive real numbers. Multiplying these values by [tex]\( \frac{1}{7} \)[/tex] will still yield all positive real numbers because a positive constant times a positive number is positive.
4. Range Determination: Since [tex]\( \frac{1}{7} \cdot 9^x \)[/tex] results in all positive values for any real number [tex]\( x \)[/tex], the range of the function [tex]\( f(x) \)[/tex] is all positive real numbers.
Therefore, the range of the function [tex]\( f(x) = \frac{1}{7}(9)^x \)[/tex] is:
all real numbers greater than 0.
Hence, the correct option is:
- all real numbers greater than 0
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.