At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the error interval for a number, [tex]\( h \)[/tex], that has been rounded to two decimal places (d.p.) to the value 4.63, we follow these steps:
1. Identify the value - The rounded number is 4.63.
2. Determine the precision - The number is rounded to 2 decimal places, which means the precision is up to 0.01 (one hundredth).
3. Calculate the error margin:
- When a number is rounded to 2 decimal places, the maximum error margin is [tex]\( \pm 0.005 \)[/tex].
- This is because any number between [tex]\( x.625 \)[/tex] and [tex]\( x.635 \)[/tex] rounds to [tex]\( x.63 \)[/tex].
4. Establish the interval:
- The lower bound is obtained by subtracting the error margin from the rounded number: [tex]\( 4.63 - 0.005 = 4.625 \)[/tex].
- The upper bound is obtained by adding the error margin to the rounded number: [tex]\( 4.63 + 0.005 = 4.635 \)[/tex].
Thus, the error interval for the number [tex]\( h \)[/tex] is given by:
[tex]\[ 4.625 \leq h < 4.635 \][/tex]
In interval notation, this is written as:
[tex]\[ [4.625, 4.635) \][/tex]
So, the number [tex]\( h \)[/tex] lies within the interval [tex]\([4.625, 4.635)\)[/tex].
1. Identify the value - The rounded number is 4.63.
2. Determine the precision - The number is rounded to 2 decimal places, which means the precision is up to 0.01 (one hundredth).
3. Calculate the error margin:
- When a number is rounded to 2 decimal places, the maximum error margin is [tex]\( \pm 0.005 \)[/tex].
- This is because any number between [tex]\( x.625 \)[/tex] and [tex]\( x.635 \)[/tex] rounds to [tex]\( x.63 \)[/tex].
4. Establish the interval:
- The lower bound is obtained by subtracting the error margin from the rounded number: [tex]\( 4.63 - 0.005 = 4.625 \)[/tex].
- The upper bound is obtained by adding the error margin to the rounded number: [tex]\( 4.63 + 0.005 = 4.635 \)[/tex].
Thus, the error interval for the number [tex]\( h \)[/tex] is given by:
[tex]\[ 4.625 \leq h < 4.635 \][/tex]
In interval notation, this is written as:
[tex]\[ [4.625, 4.635) \][/tex]
So, the number [tex]\( h \)[/tex] lies within the interval [tex]\([4.625, 4.635)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.