Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve for [tex]\( P \)[/tex] in the given equation [tex]\( A = P(1 + k)^t \)[/tex], follow these steps:
1. Identify the given equation:
[tex]\[ A = P(1 + k)^t \][/tex]
2. Rearrange the equation to solve for [tex]\( P \)[/tex]:
We want to isolate [tex]\( P \)[/tex]. To do this, we need to move everything else to the other side of the equation. Divide both sides of the equation by [tex]\( (1 + k)^t \)[/tex]:
[tex]\[ P = \frac{A}{(1 + k)^t} \][/tex]
3. Substitute example values:
Consider the following example values:
- [tex]\( A = 1000 \)[/tex]: This is the amount after time [tex]\( t \)[/tex].
- [tex]\( k = 0.05 \)[/tex]: This is the interest rate per period.
- [tex]\( t = 10 \)[/tex]: This is the number of periods.
Substitute these values into the rearranged equation:
[tex]\[ P = \frac{1000}{(1 + 0.05)^{10}} \][/tex]
4. Calculate the denominator:
First, compute [tex]\( 1 + k \)[/tex]:
[tex]\[ 1 + k = 1 + 0.05 = 1.05 \][/tex]
Then raise this to the power of [tex]\( t \)[/tex]:
[tex]\[ (1.05)^{10} \approx 1.62889 \][/tex]
5. Perform the division:
Now, divide [tex]\( A \)[/tex] by the computed value:
[tex]\[ P = \frac{1000}{1.62889} \approx 613.91 \][/tex]
Therefore, the value of [tex]\( P \)[/tex] is approximately [tex]\( 613.91 \)[/tex]. This value represents the principal amount [tex]\( P \)[/tex] before the interest was applied for 10 periods at a rate of 5% per period.
1. Identify the given equation:
[tex]\[ A = P(1 + k)^t \][/tex]
2. Rearrange the equation to solve for [tex]\( P \)[/tex]:
We want to isolate [tex]\( P \)[/tex]. To do this, we need to move everything else to the other side of the equation. Divide both sides of the equation by [tex]\( (1 + k)^t \)[/tex]:
[tex]\[ P = \frac{A}{(1 + k)^t} \][/tex]
3. Substitute example values:
Consider the following example values:
- [tex]\( A = 1000 \)[/tex]: This is the amount after time [tex]\( t \)[/tex].
- [tex]\( k = 0.05 \)[/tex]: This is the interest rate per period.
- [tex]\( t = 10 \)[/tex]: This is the number of periods.
Substitute these values into the rearranged equation:
[tex]\[ P = \frac{1000}{(1 + 0.05)^{10}} \][/tex]
4. Calculate the denominator:
First, compute [tex]\( 1 + k \)[/tex]:
[tex]\[ 1 + k = 1 + 0.05 = 1.05 \][/tex]
Then raise this to the power of [tex]\( t \)[/tex]:
[tex]\[ (1.05)^{10} \approx 1.62889 \][/tex]
5. Perform the division:
Now, divide [tex]\( A \)[/tex] by the computed value:
[tex]\[ P = \frac{1000}{1.62889} \approx 613.91 \][/tex]
Therefore, the value of [tex]\( P \)[/tex] is approximately [tex]\( 613.91 \)[/tex]. This value represents the principal amount [tex]\( P \)[/tex] before the interest was applied for 10 periods at a rate of 5% per period.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.