Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which polynomial is in standard form, we need to check if the terms are arranged in decreasing order of their degrees.
Let's analyze each polynomial:
1. [tex]\( 12x - 14x^4 + 11x^5 \)[/tex]
- The terms are [tex]\( 12x \)[/tex] (degree 1), [tex]\( -14x^4 \)[/tex] (degree 4), and [tex]\( 11x^5 \)[/tex] (degree 5).
- Their degrees are [tex]\( 1, 4, \)[/tex] and [tex]\( 5 \)[/tex].
- In standard form, the degrees should be in descending order. These terms are not in descending order since [tex]\( 1 < 4 < 5 \)[/tex].
2. [tex]\( -6x - 3x^2 + 2 \)[/tex]
- The terms are [tex]\( -6x \)[/tex] (degree 1), [tex]\( -3x^2 \)[/tex] (degree 2), and [tex]\( 2 \)[/tex] (degree 0).
- Their degrees are [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in descending order, we should have [tex]\( 2, 1, \)[/tex] and [tex]\( 0 \)[/tex]. This polynomial is not in descending order since [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex] do not follow this order.
3. [tex]\( 11x^3 - 6x^2 + 5x \)[/tex]
- The terms are [tex]\( 11x^3 \)[/tex] (degree 3), [tex]\( -6x^2 \)[/tex] (degree 2), and [tex]\( 5x \)[/tex] (degree 1).
- Their degrees are [tex]\( 3, 2, \)[/tex] and [tex]\( 1 \)[/tex].
- These degrees are indeed in descending order [tex]\( 3 > 2 > 1 \)[/tex]. So this polynomial is in standard form.
4. [tex]\( 14x^9 + 15x^{12} + 17 \)[/tex]
- The terms are [tex]\( 14x^9 \)[/tex] (degree 9), [tex]\( 15x^{12} \)[/tex] (degree 12), and [tex]\( 17 \)[/tex] (degree 0).
- Their degrees are [tex]\( 9, 12, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in standard form, the degrees should be [tex]\( 12 > 9 > 0 \)[/tex]. These terms do not follow this order since [tex]\( 9 < 12 \)[/tex].
Among the given polynomials, the only one that meets the criteria of being in standard form (arranged in descending order of degrees) is option 3, [tex]\( 11x^3 - 6x^2 + 5x \)[/tex].
Thus, the polynomial in standard form is the 3rd polynomial.
Let's analyze each polynomial:
1. [tex]\( 12x - 14x^4 + 11x^5 \)[/tex]
- The terms are [tex]\( 12x \)[/tex] (degree 1), [tex]\( -14x^4 \)[/tex] (degree 4), and [tex]\( 11x^5 \)[/tex] (degree 5).
- Their degrees are [tex]\( 1, 4, \)[/tex] and [tex]\( 5 \)[/tex].
- In standard form, the degrees should be in descending order. These terms are not in descending order since [tex]\( 1 < 4 < 5 \)[/tex].
2. [tex]\( -6x - 3x^2 + 2 \)[/tex]
- The terms are [tex]\( -6x \)[/tex] (degree 1), [tex]\( -3x^2 \)[/tex] (degree 2), and [tex]\( 2 \)[/tex] (degree 0).
- Their degrees are [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in descending order, we should have [tex]\( 2, 1, \)[/tex] and [tex]\( 0 \)[/tex]. This polynomial is not in descending order since [tex]\( 1, 2, \)[/tex] and [tex]\( 0 \)[/tex] do not follow this order.
3. [tex]\( 11x^3 - 6x^2 + 5x \)[/tex]
- The terms are [tex]\( 11x^3 \)[/tex] (degree 3), [tex]\( -6x^2 \)[/tex] (degree 2), and [tex]\( 5x \)[/tex] (degree 1).
- Their degrees are [tex]\( 3, 2, \)[/tex] and [tex]\( 1 \)[/tex].
- These degrees are indeed in descending order [tex]\( 3 > 2 > 1 \)[/tex]. So this polynomial is in standard form.
4. [tex]\( 14x^9 + 15x^{12} + 17 \)[/tex]
- The terms are [tex]\( 14x^9 \)[/tex] (degree 9), [tex]\( 15x^{12} \)[/tex] (degree 12), and [tex]\( 17 \)[/tex] (degree 0).
- Their degrees are [tex]\( 9, 12, \)[/tex] and [tex]\( 0 \)[/tex].
- To be in standard form, the degrees should be [tex]\( 12 > 9 > 0 \)[/tex]. These terms do not follow this order since [tex]\( 9 < 12 \)[/tex].
Among the given polynomials, the only one that meets the criteria of being in standard form (arranged in descending order of degrees) is option 3, [tex]\( 11x^3 - 6x^2 + 5x \)[/tex].
Thus, the polynomial in standard form is the 3rd polynomial.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.