Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which expression is a polynomial, we need to review the properties of polynomials. A polynomial is an algebraic expression that can have constants, variables, and exponents, but the exponents must be non-negative integers, and the variables should not appear in the denominator.
Let's evaluate each given expression to see if they meet these criteria:
1. [tex]\( 9x^7y^{-3}z \)[/tex]
- This expression contains the term [tex]\( y^{-3} \)[/tex], which has a negative exponent.
- Polynomials do not allow negative exponents, so this expression is not a polynomial.
2. [tex]\( 4x^3 - 2x^2 + 5x - 6 + \frac{1}{x} \)[/tex]
- The terms [tex]\( 4x^3 \)[/tex], [tex]\( -2x^2 \)[/tex], [tex]\( 5x \)[/tex], and [tex]\( -6 \)[/tex] are all valid terms for a polynomial.
- However, the term [tex]\( \frac{1}{x} \)[/tex] contains a variable in the denominator.
- Polynomials do not have variables in the denominator, so this expression is not a polynomial.
3. [tex]\( -13 \)[/tex]
- This expression is a constant, which can be considered a polynomial of degree 0.
- It fits the definition of a polynomial, as it has no variables or exponents that violate the polynomial criteria.
- Therefore, this expression is a polynomial.
4. [tex]\( 13x^{-2} \)[/tex]
- This expression contains the term [tex]\( x^{-2} \)[/tex], which has a negative exponent.
- Polynomials do not allow negative exponents, so this expression is not a polynomial.
Based on the evaluation, the expressions that are polynomials are:
- [tex]\(-13\)[/tex]
Hence, the expression (c) [tex]\( -13 \)[/tex] is the polynomial.
Let's evaluate each given expression to see if they meet these criteria:
1. [tex]\( 9x^7y^{-3}z \)[/tex]
- This expression contains the term [tex]\( y^{-3} \)[/tex], which has a negative exponent.
- Polynomials do not allow negative exponents, so this expression is not a polynomial.
2. [tex]\( 4x^3 - 2x^2 + 5x - 6 + \frac{1}{x} \)[/tex]
- The terms [tex]\( 4x^3 \)[/tex], [tex]\( -2x^2 \)[/tex], [tex]\( 5x \)[/tex], and [tex]\( -6 \)[/tex] are all valid terms for a polynomial.
- However, the term [tex]\( \frac{1}{x} \)[/tex] contains a variable in the denominator.
- Polynomials do not have variables in the denominator, so this expression is not a polynomial.
3. [tex]\( -13 \)[/tex]
- This expression is a constant, which can be considered a polynomial of degree 0.
- It fits the definition of a polynomial, as it has no variables or exponents that violate the polynomial criteria.
- Therefore, this expression is a polynomial.
4. [tex]\( 13x^{-2} \)[/tex]
- This expression contains the term [tex]\( x^{-2} \)[/tex], which has a negative exponent.
- Polynomials do not allow negative exponents, so this expression is not a polynomial.
Based on the evaluation, the expressions that are polynomials are:
- [tex]\(-13\)[/tex]
Hence, the expression (c) [tex]\( -13 \)[/tex] is the polynomial.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.