Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which polynomial is in standard form, we need to ensure that the terms are arranged in decreasing order of their exponents. Let’s go through each polynomial one by one:
1. [tex]\( 1 + 2x - 8x^2 + 6x^3 \)[/tex]:
Rearrange the terms in descending order of the exponents:
[tex]\[ 6x^3 - 8x^2 + 2x + 1 \][/tex]
2. [tex]\( 2x^2 + 6x^3 - 9x + 12 \)[/tex]:
Rearrange the terms in descending order of the exponents:
[tex]\[ 6x^3 + 2x^2 - 9x + 12 \][/tex]
3. [tex]\( 6x^3 + 5x - 3x^2 + 2 \)[/tex]:
Rearrange the terms in descending order of the exponents:
[tex]\[ 6x^3 - 3x^2 + 5x + 2 \][/tex]
4. [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]:
This polynomial is already in order:
[tex]\[ 2x^3 + 4x^2 - 7x + 5 \][/tex]
The polynomial that is initially written in standard form (terms in decreasing order of their exponents) is the fourth one:
[tex]\[ 2x^3 + 4x^2 - 7x + 5 \][/tex]
Therefore, the polynomial that is in standard form is the fourth one in the given list.
1. [tex]\( 1 + 2x - 8x^2 + 6x^3 \)[/tex]:
Rearrange the terms in descending order of the exponents:
[tex]\[ 6x^3 - 8x^2 + 2x + 1 \][/tex]
2. [tex]\( 2x^2 + 6x^3 - 9x + 12 \)[/tex]:
Rearrange the terms in descending order of the exponents:
[tex]\[ 6x^3 + 2x^2 - 9x + 12 \][/tex]
3. [tex]\( 6x^3 + 5x - 3x^2 + 2 \)[/tex]:
Rearrange the terms in descending order of the exponents:
[tex]\[ 6x^3 - 3x^2 + 5x + 2 \][/tex]
4. [tex]\( 2x^3 + 4x^2 - 7x + 5 \)[/tex]:
This polynomial is already in order:
[tex]\[ 2x^3 + 4x^2 - 7x + 5 \][/tex]
The polynomial that is initially written in standard form (terms in decreasing order of their exponents) is the fourth one:
[tex]\[ 2x^3 + 4x^2 - 7x + 5 \][/tex]
Therefore, the polynomial that is in standard form is the fourth one in the given list.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.