Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the type of reaction between potassium iodide (KI) and lead(II) nitrate [Pb(NO₃)₂], follow these steps:
1. Identify the Reactants:
- Potassium iodide (KI) is a compound that, when dissolved in water, dissociates into potassium ions (K⁺) and iodide ions (I⁻).
- Lead(II) nitrate [Pb(NO₃)₂] is a compound that, when dissolved in water, dissociates into lead(II) ions (Pb²⁺) and nitrate ions (NO₃⁻).
2. Write the Balanced Chemical Equation:
- The chemical reaction involves the mixing of aqueous solutions of KI and Pb(NO₃)₂.
[tex]\[ 2\text{KI} (aq) + \text{Pb}(\text{NO}_3)_2 (aq) \rightarrow 2\text{KNO}_3 (aq) + \text{PbI}_2 (s) \][/tex]
3. Reaction Type Analysis:
- This reaction can be classified as a double displacement reaction. In a double displacement reaction, the cations and anions of two different compounds switch places, forming two new compounds.
- The cations ([tex]\(K^+\)[/tex] from KI and [tex]\(Pb^{2+}\)[/tex] from Pb(NO₃)₂) and the anions ([tex]\(I^-\)[/tex] from KI and [tex]\(NO₃^-\)[/tex] from Pb(NO₃)₂) exchange partners to form new compounds.
4. Observation of Products:
- Potassium nitrate (KNO₃) remains in aqueous solution.
- Lead(II) iodide (PbI₂) precipitates out of the solution as a solid due to its low solubility in water.
The precipitate formation indicates that the reaction is a double displacement reaction leading to precipitation.
Result:
The type of reaction between potassium iodide (KI) and lead(II) nitrate [Pb(NO₃)₂] is a double displacement reaction leading to precipitation.
1. Identify the Reactants:
- Potassium iodide (KI) is a compound that, when dissolved in water, dissociates into potassium ions (K⁺) and iodide ions (I⁻).
- Lead(II) nitrate [Pb(NO₃)₂] is a compound that, when dissolved in water, dissociates into lead(II) ions (Pb²⁺) and nitrate ions (NO₃⁻).
2. Write the Balanced Chemical Equation:
- The chemical reaction involves the mixing of aqueous solutions of KI and Pb(NO₃)₂.
[tex]\[ 2\text{KI} (aq) + \text{Pb}(\text{NO}_3)_2 (aq) \rightarrow 2\text{KNO}_3 (aq) + \text{PbI}_2 (s) \][/tex]
3. Reaction Type Analysis:
- This reaction can be classified as a double displacement reaction. In a double displacement reaction, the cations and anions of two different compounds switch places, forming two new compounds.
- The cations ([tex]\(K^+\)[/tex] from KI and [tex]\(Pb^{2+}\)[/tex] from Pb(NO₃)₂) and the anions ([tex]\(I^-\)[/tex] from KI and [tex]\(NO₃^-\)[/tex] from Pb(NO₃)₂) exchange partners to form new compounds.
4. Observation of Products:
- Potassium nitrate (KNO₃) remains in aqueous solution.
- Lead(II) iodide (PbI₂) precipitates out of the solution as a solid due to its low solubility in water.
The precipitate formation indicates that the reaction is a double displacement reaction leading to precipitation.
Result:
The type of reaction between potassium iodide (KI) and lead(II) nitrate [Pb(NO₃)₂] is a double displacement reaction leading to precipitation.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.