Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Arc CD is [tex]\frac{1}{4}[/tex] of the circumference of a circle. What is the radian measure of the central angle?

A. [tex]\frac{\pi}{4}[/tex] radians
B. [tex]\frac{\pi}{2}[/tex] radians
C. [tex]2\pi[/tex] radians
D. [tex]4\pi[/tex] radians


Sagot :

To determine the radian measure of the central angle for an arc CD, which is [tex]\(\frac{1}{4}\)[/tex] of the circumference of a circle, let's follow these steps:

1. Understand the relationship between arc length and the central angle:
- The circumference of the entire circle is [tex]\(2\pi\)[/tex] radians in terms of the central angle.
- Given that arc CD is [tex]\(\frac{1}{4}\)[/tex] of the total circumference, the central angle corresponding to arc CD will be [tex]\(\frac{1}{4}\)[/tex] of the full circle's central angle.

2. Calculate the central angle in radians:
- Since the full circle in radians is [tex]\(2\pi\)[/tex],
- The central angle corresponding to arc CD is [tex]\(\frac{1}{4} \times 2\pi\)[/tex].

3. Perform the fraction multiplication:
- [tex]\(\frac{1}{4} \times 2\pi = \frac{2\pi}{4} = \frac{\pi}{2}\)[/tex].

So, the radian measure of the central angle corresponding to arc CD, which is [tex]\(\frac{1}{4}\)[/tex] of the circumference of the circle, is [tex]\(\frac{\pi}{2}\)[/tex] radians.

Hence, the correct answer is [tex]\(\frac{\pi}{2}\)[/tex] radians.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.