At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the radian measure of the central angle for an arc CD, which is [tex]\(\frac{1}{4}\)[/tex] of the circumference of a circle, let's follow these steps:
1. Understand the relationship between arc length and the central angle:
- The circumference of the entire circle is [tex]\(2\pi\)[/tex] radians in terms of the central angle.
- Given that arc CD is [tex]\(\frac{1}{4}\)[/tex] of the total circumference, the central angle corresponding to arc CD will be [tex]\(\frac{1}{4}\)[/tex] of the full circle's central angle.
2. Calculate the central angle in radians:
- Since the full circle in radians is [tex]\(2\pi\)[/tex],
- The central angle corresponding to arc CD is [tex]\(\frac{1}{4} \times 2\pi\)[/tex].
3. Perform the fraction multiplication:
- [tex]\(\frac{1}{4} \times 2\pi = \frac{2\pi}{4} = \frac{\pi}{2}\)[/tex].
So, the radian measure of the central angle corresponding to arc CD, which is [tex]\(\frac{1}{4}\)[/tex] of the circumference of the circle, is [tex]\(\frac{\pi}{2}\)[/tex] radians.
Hence, the correct answer is [tex]\(\frac{\pi}{2}\)[/tex] radians.
1. Understand the relationship between arc length and the central angle:
- The circumference of the entire circle is [tex]\(2\pi\)[/tex] radians in terms of the central angle.
- Given that arc CD is [tex]\(\frac{1}{4}\)[/tex] of the total circumference, the central angle corresponding to arc CD will be [tex]\(\frac{1}{4}\)[/tex] of the full circle's central angle.
2. Calculate the central angle in radians:
- Since the full circle in radians is [tex]\(2\pi\)[/tex],
- The central angle corresponding to arc CD is [tex]\(\frac{1}{4} \times 2\pi\)[/tex].
3. Perform the fraction multiplication:
- [tex]\(\frac{1}{4} \times 2\pi = \frac{2\pi}{4} = \frac{\pi}{2}\)[/tex].
So, the radian measure of the central angle corresponding to arc CD, which is [tex]\(\frac{1}{4}\)[/tex] of the circumference of the circle, is [tex]\(\frac{\pi}{2}\)[/tex] radians.
Hence, the correct answer is [tex]\(\frac{\pi}{2}\)[/tex] radians.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.