At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of [tex]\( f(1) \)[/tex] for the given piecewise function, we need to carefully evaluate the function at [tex]\( x = 1 \)[/tex].
Given the piecewise function:
[tex]\[ f(x) = \begin{cases} x^2 + 1, & -4 \leq x < 1 \\ -x^2, & 1 \leq x < 2 \\ 3x, & x \geq 2 \end{cases} \][/tex]
1. First, identify which interval [tex]\( x = 1 \)[/tex] falls into:
- The interval [tex]\([-4 \leq x < 1)\)[/tex] does not include [tex]\(1\)[/tex], since it is strictly less than 1.
- The interval [tex]\([1 \leq x < 2)\)[/tex] does include [tex]\(1\)[/tex], because [tex]\(1\)[/tex] lies within the range [tex]\(1 \leq x < 2\)[/tex].
- The interval [tex]\([x \geq 2)\)[/tex] does not include [tex]\(1\)[/tex], since [tex]\(1\)[/tex] is less than [tex]\(2\)[/tex].
2. [tex]\( x = 1 \)[/tex] falls into the interval [tex]\( [1 \leq x < 2) \)[/tex]. For this interval, the function is defined as:
[tex]\[ f(x) = -x^2 \][/tex]
3. Now substitute [tex]\( x = 1 \)[/tex] into this function definition:
[tex]\[ f(1) = -(1)^2 = -1 \][/tex]
Therefore, the value of [tex]\( f(1) \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Given the piecewise function:
[tex]\[ f(x) = \begin{cases} x^2 + 1, & -4 \leq x < 1 \\ -x^2, & 1 \leq x < 2 \\ 3x, & x \geq 2 \end{cases} \][/tex]
1. First, identify which interval [tex]\( x = 1 \)[/tex] falls into:
- The interval [tex]\([-4 \leq x < 1)\)[/tex] does not include [tex]\(1\)[/tex], since it is strictly less than 1.
- The interval [tex]\([1 \leq x < 2)\)[/tex] does include [tex]\(1\)[/tex], because [tex]\(1\)[/tex] lies within the range [tex]\(1 \leq x < 2\)[/tex].
- The interval [tex]\([x \geq 2)\)[/tex] does not include [tex]\(1\)[/tex], since [tex]\(1\)[/tex] is less than [tex]\(2\)[/tex].
2. [tex]\( x = 1 \)[/tex] falls into the interval [tex]\( [1 \leq x < 2) \)[/tex]. For this interval, the function is defined as:
[tex]\[ f(x) = -x^2 \][/tex]
3. Now substitute [tex]\( x = 1 \)[/tex] into this function definition:
[tex]\[ f(1) = -(1)^2 = -1 \][/tex]
Therefore, the value of [tex]\( f(1) \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.