Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the value of [tex]\( f(1) \)[/tex] for the given piecewise function, we need to carefully evaluate the function at [tex]\( x = 1 \)[/tex].
Given the piecewise function:
[tex]\[ f(x) = \begin{cases} x^2 + 1, & -4 \leq x < 1 \\ -x^2, & 1 \leq x < 2 \\ 3x, & x \geq 2 \end{cases} \][/tex]
1. First, identify which interval [tex]\( x = 1 \)[/tex] falls into:
- The interval [tex]\([-4 \leq x < 1)\)[/tex] does not include [tex]\(1\)[/tex], since it is strictly less than 1.
- The interval [tex]\([1 \leq x < 2)\)[/tex] does include [tex]\(1\)[/tex], because [tex]\(1\)[/tex] lies within the range [tex]\(1 \leq x < 2\)[/tex].
- The interval [tex]\([x \geq 2)\)[/tex] does not include [tex]\(1\)[/tex], since [tex]\(1\)[/tex] is less than [tex]\(2\)[/tex].
2. [tex]\( x = 1 \)[/tex] falls into the interval [tex]\( [1 \leq x < 2) \)[/tex]. For this interval, the function is defined as:
[tex]\[ f(x) = -x^2 \][/tex]
3. Now substitute [tex]\( x = 1 \)[/tex] into this function definition:
[tex]\[ f(1) = -(1)^2 = -1 \][/tex]
Therefore, the value of [tex]\( f(1) \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Given the piecewise function:
[tex]\[ f(x) = \begin{cases} x^2 + 1, & -4 \leq x < 1 \\ -x^2, & 1 \leq x < 2 \\ 3x, & x \geq 2 \end{cases} \][/tex]
1. First, identify which interval [tex]\( x = 1 \)[/tex] falls into:
- The interval [tex]\([-4 \leq x < 1)\)[/tex] does not include [tex]\(1\)[/tex], since it is strictly less than 1.
- The interval [tex]\([1 \leq x < 2)\)[/tex] does include [tex]\(1\)[/tex], because [tex]\(1\)[/tex] lies within the range [tex]\(1 \leq x < 2\)[/tex].
- The interval [tex]\([x \geq 2)\)[/tex] does not include [tex]\(1\)[/tex], since [tex]\(1\)[/tex] is less than [tex]\(2\)[/tex].
2. [tex]\( x = 1 \)[/tex] falls into the interval [tex]\( [1 \leq x < 2) \)[/tex]. For this interval, the function is defined as:
[tex]\[ f(x) = -x^2 \][/tex]
3. Now substitute [tex]\( x = 1 \)[/tex] into this function definition:
[tex]\[ f(1) = -(1)^2 = -1 \][/tex]
Therefore, the value of [tex]\( f(1) \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.