Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the provided function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] and the given statements to determine which, if any, is true.
### Step 1: Determine the Vertex:
The vertex form of an absolute value function is [tex]\( f(x) = a |x - h| + k \)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the graph.
- For the given function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex], we can identify [tex]\( h \)[/tex] and [tex]\( k \)[/tex] from the expression inside and outside the absolute value.
- Comparing [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] with the standard form [tex]\( f(x) = a |x - h| + k \)[/tex], we see that [tex]\( h = -4 \)[/tex] and [tex]\( k = -6 \)[/tex].
Thus, the vertex of the function is [tex]\((-4, -6)\)[/tex].
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] has a vertex of [tex]\((-4,6)\)[/tex]:
This statement is false because the vertex is actually [tex]\((-4, -6)\)[/tex].
### Step 2: Check for Horizontal Stretch:
A horizontal stretch affects the [tex]\( x \)[/tex]-values of the function, expanding or compressing the graph horizontally. The function [tex]\( a |x - h| + k \)[/tex] with [tex]\( a \neq 1 \)[/tex] affects the vertical stretch/compression and reflection.
- [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] has a factor of [tex]\(-\frac{2}{3}\)[/tex]. This means a vertical compression by a factor of [tex]\( \frac{2}{3} \)[/tex] and a reflection across the x-axis, not a horizontal stretch or compression.
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] is a horizontal stretch of the graph of the parent function:
This statement is false. The transformation is a vertical compression and a downward reflection, not a horizontal stretch.
### Step 3: Determine the Direction of Opening:
The sign of the coefficient [tex]\( a \)[/tex] in [tex]\( f(x) = a |x - h| + k \)[/tex] determines if the graph opens upward or downward.
- Here, [tex]\( a = -\frac{2}{3} \)[/tex], which is negative.
Thus, the graph opens downward.
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] opens upward:
This statement is false. The graph opens downward due to the negative coefficient.
### Step 4: Determine the Domain:
The domain of the absolute value function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] is all real numbers.
- Absolute value functions naturally have a domain of all real numbers unless explicitly restricted.
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] has a domain of [tex]\( x \leq -6 \)[/tex]:
This statement is false. The domain is all real numbers.
### Conclusion:
After analyzing all the given statements and the characteristics of the function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex], it turns out that none of the statements provided are true.
Therefore, the overall conclusion is that there is no true statement out of the given options.
### Step 1: Determine the Vertex:
The vertex form of an absolute value function is [tex]\( f(x) = a |x - h| + k \)[/tex], where [tex]\((h, k)\)[/tex] represents the vertex of the graph.
- For the given function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex], we can identify [tex]\( h \)[/tex] and [tex]\( k \)[/tex] from the expression inside and outside the absolute value.
- Comparing [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] with the standard form [tex]\( f(x) = a |x - h| + k \)[/tex], we see that [tex]\( h = -4 \)[/tex] and [tex]\( k = -6 \)[/tex].
Thus, the vertex of the function is [tex]\((-4, -6)\)[/tex].
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] has a vertex of [tex]\((-4,6)\)[/tex]:
This statement is false because the vertex is actually [tex]\((-4, -6)\)[/tex].
### Step 2: Check for Horizontal Stretch:
A horizontal stretch affects the [tex]\( x \)[/tex]-values of the function, expanding or compressing the graph horizontally. The function [tex]\( a |x - h| + k \)[/tex] with [tex]\( a \neq 1 \)[/tex] affects the vertical stretch/compression and reflection.
- [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] has a factor of [tex]\(-\frac{2}{3}\)[/tex]. This means a vertical compression by a factor of [tex]\( \frac{2}{3} \)[/tex] and a reflection across the x-axis, not a horizontal stretch or compression.
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] is a horizontal stretch of the graph of the parent function:
This statement is false. The transformation is a vertical compression and a downward reflection, not a horizontal stretch.
### Step 3: Determine the Direction of Opening:
The sign of the coefficient [tex]\( a \)[/tex] in [tex]\( f(x) = a |x - h| + k \)[/tex] determines if the graph opens upward or downward.
- Here, [tex]\( a = -\frac{2}{3} \)[/tex], which is negative.
Thus, the graph opens downward.
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] opens upward:
This statement is false. The graph opens downward due to the negative coefficient.
### Step 4: Determine the Domain:
The domain of the absolute value function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex] is all real numbers.
- Absolute value functions naturally have a domain of all real numbers unless explicitly restricted.
#### Statement Analysis:
- The graph of [tex]\( f(x) \)[/tex] has a domain of [tex]\( x \leq -6 \)[/tex]:
This statement is false. The domain is all real numbers.
### Conclusion:
After analyzing all the given statements and the characteristics of the function [tex]\( f(x) = -\frac{2}{3} |x + 4| - 6 \)[/tex], it turns out that none of the statements provided are true.
Therefore, the overall conclusion is that there is no true statement out of the given options.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.