Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which function has a vertex at [tex]\((2,6)\)[/tex], we first need to understand the general form of an absolute value function's vertex form, which is given by:
[tex]\[ f(x) = a| x - h | + k \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the vertex of the function.
Now, let’s analyze each given function and identify their vertices step-by-step:
### 1. Function: [tex]\( f(x) = 2|x-2|-6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x-2|\)[/tex], suggests [tex]\( h = 2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then subtract 6.
- Thus, the vertex of this function is [tex]\((2, -6)\)[/tex].
### 2. Function: [tex]\( f(x) = 2|x-2|+6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x-2|\)[/tex], suggests [tex]\( h = 2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then add 6.
- Thus, the vertex of this function is [tex]\((2, 6)\)[/tex], which matches the given vertex.
### 3. Function: [tex]\( f(x) = 2|x+2|+6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x+2|\)[/tex], rewrites as [tex]\(|x - (-2)|\)[/tex], suggesting [tex]\( h = -2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then add 6.
- Thus, the vertex of this function is [tex]\((-2, 6)\)[/tex].
### 4. Function: [tex]\( f(x) = 2|x+2|-6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x+2|\)[/tex], rewrites as [tex]\(|x - (-2)|\)[/tex], suggesting [tex]\( h = -2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then subtract 6.
- Thus, the vertex of this function is [tex]\((-2, -6)\)[/tex].
Upon reviewing each function, we can see that the function with a vertex at [tex]\((2,6)\)[/tex] is:
[tex]\[ f(x) = 2|x-2|+6 \][/tex]
Therefore, the correct function is the second one: [tex]\( f(x) = 2|x-2|+6 \)[/tex].
[tex]\[ f(x) = a| x - h | + k \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the vertex of the function.
Now, let’s analyze each given function and identify their vertices step-by-step:
### 1. Function: [tex]\( f(x) = 2|x-2|-6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x-2|\)[/tex], suggests [tex]\( h = 2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then subtract 6.
- Thus, the vertex of this function is [tex]\((2, -6)\)[/tex].
### 2. Function: [tex]\( f(x) = 2|x-2|+6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x-2|\)[/tex], suggests [tex]\( h = 2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then add 6.
- Thus, the vertex of this function is [tex]\((2, 6)\)[/tex], which matches the given vertex.
### 3. Function: [tex]\( f(x) = 2|x+2|+6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x+2|\)[/tex], rewrites as [tex]\(|x - (-2)|\)[/tex], suggesting [tex]\( h = -2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then add 6.
- Thus, the vertex of this function is [tex]\((-2, 6)\)[/tex].
### 4. Function: [tex]\( f(x) = 2|x+2|-6 \)[/tex]
- The expression inside the absolute value, [tex]\(|x+2|\)[/tex], rewrites as [tex]\(|x - (-2)|\)[/tex], suggesting [tex]\( h = -2 \)[/tex].
- After applying the absolute value, we multiply by 2 and then subtract 6.
- Thus, the vertex of this function is [tex]\((-2, -6)\)[/tex].
Upon reviewing each function, we can see that the function with a vertex at [tex]\((2,6)\)[/tex] is:
[tex]\[ f(x) = 2|x-2|+6 \][/tex]
Therefore, the correct function is the second one: [tex]\( f(x) = 2|x-2|+6 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.