Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the zeros of the polynomial [tex]\( f(x) = 3(x+5)^3(x-5)^2(x+7)(x-4)^3 \)[/tex] and their corresponding multiplicities, we need to examine each factor of the polynomial and their respective exponents.
1. Zeros of multiplicity one:
- We look for factors raised to the power of 1. The factor [tex]\( (x+7) \)[/tex] is raised to the power of 1.
- The zero corresponding to this factor is [tex]\( x = -7 \)[/tex].
Therefore, the zero of multiplicity one is:
[tex]\[ 7 \][/tex]
2. Zeros of multiplicity two:
- We search for factors raised to the power of 2. The factor [tex]\( (x-5) \)[/tex] is raised to the power of 2.
- The zero corresponding to this factor is [tex]\( x = -5 \)[/tex].
Therefore, the zero of multiplicity two is:
[tex]\[ -5 \][/tex]
3. Zeros of multiplicity three:
- We identify factors raised to the power of 3. The factors [tex]\( (x+5) \)[/tex] and [tex]\( (x-4) \)[/tex] are each raised to the power of 3.
- The zeros corresponding to these factors are [tex]\( x = 5 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the zeros of multiplicity three are:
[tex]\[ 5, -4 \][/tex]
To summarize:
- The zero of multiplicity one is: [tex]\( 7 \)[/tex]
- The zero of multiplicity two is: [tex]\( -5 \)[/tex]
- The zeros of multiplicity three are: [tex]\( 5, -4 \)[/tex]
1. Zeros of multiplicity one:
- We look for factors raised to the power of 1. The factor [tex]\( (x+7) \)[/tex] is raised to the power of 1.
- The zero corresponding to this factor is [tex]\( x = -7 \)[/tex].
Therefore, the zero of multiplicity one is:
[tex]\[ 7 \][/tex]
2. Zeros of multiplicity two:
- We search for factors raised to the power of 2. The factor [tex]\( (x-5) \)[/tex] is raised to the power of 2.
- The zero corresponding to this factor is [tex]\( x = -5 \)[/tex].
Therefore, the zero of multiplicity two is:
[tex]\[ -5 \][/tex]
3. Zeros of multiplicity three:
- We identify factors raised to the power of 3. The factors [tex]\( (x+5) \)[/tex] and [tex]\( (x-4) \)[/tex] are each raised to the power of 3.
- The zeros corresponding to these factors are [tex]\( x = 5 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the zeros of multiplicity three are:
[tex]\[ 5, -4 \][/tex]
To summarize:
- The zero of multiplicity one is: [tex]\( 7 \)[/tex]
- The zero of multiplicity two is: [tex]\( -5 \)[/tex]
- The zeros of multiplicity three are: [tex]\( 5, -4 \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.