Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the zeros of the polynomial [tex]\( f(x) = 3(x+5)^3(x-5)^2(x+7)(x-4)^3 \)[/tex] and their corresponding multiplicities, we need to examine each factor of the polynomial and their respective exponents.
1. Zeros of multiplicity one:
- We look for factors raised to the power of 1. The factor [tex]\( (x+7) \)[/tex] is raised to the power of 1.
- The zero corresponding to this factor is [tex]\( x = -7 \)[/tex].
Therefore, the zero of multiplicity one is:
[tex]\[ 7 \][/tex]
2. Zeros of multiplicity two:
- We search for factors raised to the power of 2. The factor [tex]\( (x-5) \)[/tex] is raised to the power of 2.
- The zero corresponding to this factor is [tex]\( x = -5 \)[/tex].
Therefore, the zero of multiplicity two is:
[tex]\[ -5 \][/tex]
3. Zeros of multiplicity three:
- We identify factors raised to the power of 3. The factors [tex]\( (x+5) \)[/tex] and [tex]\( (x-4) \)[/tex] are each raised to the power of 3.
- The zeros corresponding to these factors are [tex]\( x = 5 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the zeros of multiplicity three are:
[tex]\[ 5, -4 \][/tex]
To summarize:
- The zero of multiplicity one is: [tex]\( 7 \)[/tex]
- The zero of multiplicity two is: [tex]\( -5 \)[/tex]
- The zeros of multiplicity three are: [tex]\( 5, -4 \)[/tex]
1. Zeros of multiplicity one:
- We look for factors raised to the power of 1. The factor [tex]\( (x+7) \)[/tex] is raised to the power of 1.
- The zero corresponding to this factor is [tex]\( x = -7 \)[/tex].
Therefore, the zero of multiplicity one is:
[tex]\[ 7 \][/tex]
2. Zeros of multiplicity two:
- We search for factors raised to the power of 2. The factor [tex]\( (x-5) \)[/tex] is raised to the power of 2.
- The zero corresponding to this factor is [tex]\( x = -5 \)[/tex].
Therefore, the zero of multiplicity two is:
[tex]\[ -5 \][/tex]
3. Zeros of multiplicity three:
- We identify factors raised to the power of 3. The factors [tex]\( (x+5) \)[/tex] and [tex]\( (x-4) \)[/tex] are each raised to the power of 3.
- The zeros corresponding to these factors are [tex]\( x = 5 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the zeros of multiplicity three are:
[tex]\[ 5, -4 \][/tex]
To summarize:
- The zero of multiplicity one is: [tex]\( 7 \)[/tex]
- The zero of multiplicity two is: [tex]\( -5 \)[/tex]
- The zeros of multiplicity three are: [tex]\( 5, -4 \)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.