Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the zeros of the polynomial [tex]\( f(x) = 3(x+5)^3(x-5)^2(x+7)(x-4)^3 \)[/tex] and their corresponding multiplicities, we need to examine each factor of the polynomial and their respective exponents.
1. Zeros of multiplicity one:
- We look for factors raised to the power of 1. The factor [tex]\( (x+7) \)[/tex] is raised to the power of 1.
- The zero corresponding to this factor is [tex]\( x = -7 \)[/tex].
Therefore, the zero of multiplicity one is:
[tex]\[ 7 \][/tex]
2. Zeros of multiplicity two:
- We search for factors raised to the power of 2. The factor [tex]\( (x-5) \)[/tex] is raised to the power of 2.
- The zero corresponding to this factor is [tex]\( x = -5 \)[/tex].
Therefore, the zero of multiplicity two is:
[tex]\[ -5 \][/tex]
3. Zeros of multiplicity three:
- We identify factors raised to the power of 3. The factors [tex]\( (x+5) \)[/tex] and [tex]\( (x-4) \)[/tex] are each raised to the power of 3.
- The zeros corresponding to these factors are [tex]\( x = 5 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the zeros of multiplicity three are:
[tex]\[ 5, -4 \][/tex]
To summarize:
- The zero of multiplicity one is: [tex]\( 7 \)[/tex]
- The zero of multiplicity two is: [tex]\( -5 \)[/tex]
- The zeros of multiplicity three are: [tex]\( 5, -4 \)[/tex]
1. Zeros of multiplicity one:
- We look for factors raised to the power of 1. The factor [tex]\( (x+7) \)[/tex] is raised to the power of 1.
- The zero corresponding to this factor is [tex]\( x = -7 \)[/tex].
Therefore, the zero of multiplicity one is:
[tex]\[ 7 \][/tex]
2. Zeros of multiplicity two:
- We search for factors raised to the power of 2. The factor [tex]\( (x-5) \)[/tex] is raised to the power of 2.
- The zero corresponding to this factor is [tex]\( x = -5 \)[/tex].
Therefore, the zero of multiplicity two is:
[tex]\[ -5 \][/tex]
3. Zeros of multiplicity three:
- We identify factors raised to the power of 3. The factors [tex]\( (x+5) \)[/tex] and [tex]\( (x-4) \)[/tex] are each raised to the power of 3.
- The zeros corresponding to these factors are [tex]\( x = 5 \)[/tex] and [tex]\( x = -4 \)[/tex].
Therefore, the zeros of multiplicity three are:
[tex]\[ 5, -4 \][/tex]
To summarize:
- The zero of multiplicity one is: [tex]\( 7 \)[/tex]
- The zero of multiplicity two is: [tex]\( -5 \)[/tex]
- The zeros of multiplicity three are: [tex]\( 5, -4 \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.