Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which equation can be used to find any corresponding length [tex]\(l\)[/tex] and width [tex]\(w\)[/tex] that fit the pattern in the given table, we need to analyze the relationship between [tex]\(l\)[/tex] and [tex]\(w\)[/tex].
The table provides the following data pairs for width ([tex]\(w\)[/tex]) and length ([tex]\(l\)[/tex]):
[tex]\[ \begin{array}{|c|c|} \hline \text{Width} \, (w) & \text{Length} \, (l) \\ \hline 2 & 37.5 \\ \hline 4 & 18.75 \\ \hline 6 & 12.5 \\ \hline 8 & 9.375 \\ \hline \end{array} \][/tex]
We hypothesize that the relationship between [tex]\(w\)[/tex] and [tex]\(l\)[/tex] follows the equation [tex]\(l = \frac{k}{w}\)[/tex], where [tex]\(k\)[/tex] is a constant.
To verify this, we need to calculate the product [tex]\(l \cdot w\)[/tex] for each pair of values provided in the table and check if the product remains constant.
[tex]\[ \begin{align*} (2, 37.5) &: 2 \cdot 37.5 = 75.0 \\ (4, 18.75) &: 4 \cdot 18.75 = 75.0 \\ (6, 12.5) &: 6 \cdot 12.5 = 75.0 \\ (8, 9.375) &: 8 \cdot 9.375 = 75.0 \\ \end{align*} \][/tex]
Since the product [tex]\(l \cdot w\)[/tex] is 75.0 for each pair, it confirms that [tex]\(k = 75.0\)[/tex]. This means the relationship between the width [tex]\(w\)[/tex] and the length [tex]\(l\)[/tex] is indeed described by the equation [tex]\(l = \frac{k}{w}\)[/tex], with [tex]\(k = 75.0\)[/tex].
Thus, the correct equation to represent the relationship between the width and the length of the rectangle, given the data in the table, is:
[tex]\[ l = \frac{75.0}{w} \][/tex]
Therefore, the equation [tex]\(l = \frac{k}{w}\)[/tex] fits the pattern in the table, where [tex]\(k = 75.0\)[/tex].
The table provides the following data pairs for width ([tex]\(w\)[/tex]) and length ([tex]\(l\)[/tex]):
[tex]\[ \begin{array}{|c|c|} \hline \text{Width} \, (w) & \text{Length} \, (l) \\ \hline 2 & 37.5 \\ \hline 4 & 18.75 \\ \hline 6 & 12.5 \\ \hline 8 & 9.375 \\ \hline \end{array} \][/tex]
We hypothesize that the relationship between [tex]\(w\)[/tex] and [tex]\(l\)[/tex] follows the equation [tex]\(l = \frac{k}{w}\)[/tex], where [tex]\(k\)[/tex] is a constant.
To verify this, we need to calculate the product [tex]\(l \cdot w\)[/tex] for each pair of values provided in the table and check if the product remains constant.
[tex]\[ \begin{align*} (2, 37.5) &: 2 \cdot 37.5 = 75.0 \\ (4, 18.75) &: 4 \cdot 18.75 = 75.0 \\ (6, 12.5) &: 6 \cdot 12.5 = 75.0 \\ (8, 9.375) &: 8 \cdot 9.375 = 75.0 \\ \end{align*} \][/tex]
Since the product [tex]\(l \cdot w\)[/tex] is 75.0 for each pair, it confirms that [tex]\(k = 75.0\)[/tex]. This means the relationship between the width [tex]\(w\)[/tex] and the length [tex]\(l\)[/tex] is indeed described by the equation [tex]\(l = \frac{k}{w}\)[/tex], with [tex]\(k = 75.0\)[/tex].
Thus, the correct equation to represent the relationship between the width and the length of the rectangle, given the data in the table, is:
[tex]\[ l = \frac{75.0}{w} \][/tex]
Therefore, the equation [tex]\(l = \frac{k}{w}\)[/tex] fits the pattern in the table, where [tex]\(k = 75.0\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.