Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which equation can be used to find any corresponding length [tex]\(l\)[/tex] and width [tex]\(w\)[/tex] that fit the pattern in the given table, we need to analyze the relationship between [tex]\(l\)[/tex] and [tex]\(w\)[/tex].
The table provides the following data pairs for width ([tex]\(w\)[/tex]) and length ([tex]\(l\)[/tex]):
[tex]\[ \begin{array}{|c|c|} \hline \text{Width} \, (w) & \text{Length} \, (l) \\ \hline 2 & 37.5 \\ \hline 4 & 18.75 \\ \hline 6 & 12.5 \\ \hline 8 & 9.375 \\ \hline \end{array} \][/tex]
We hypothesize that the relationship between [tex]\(w\)[/tex] and [tex]\(l\)[/tex] follows the equation [tex]\(l = \frac{k}{w}\)[/tex], where [tex]\(k\)[/tex] is a constant.
To verify this, we need to calculate the product [tex]\(l \cdot w\)[/tex] for each pair of values provided in the table and check if the product remains constant.
[tex]\[ \begin{align*} (2, 37.5) &: 2 \cdot 37.5 = 75.0 \\ (4, 18.75) &: 4 \cdot 18.75 = 75.0 \\ (6, 12.5) &: 6 \cdot 12.5 = 75.0 \\ (8, 9.375) &: 8 \cdot 9.375 = 75.0 \\ \end{align*} \][/tex]
Since the product [tex]\(l \cdot w\)[/tex] is 75.0 for each pair, it confirms that [tex]\(k = 75.0\)[/tex]. This means the relationship between the width [tex]\(w\)[/tex] and the length [tex]\(l\)[/tex] is indeed described by the equation [tex]\(l = \frac{k}{w}\)[/tex], with [tex]\(k = 75.0\)[/tex].
Thus, the correct equation to represent the relationship between the width and the length of the rectangle, given the data in the table, is:
[tex]\[ l = \frac{75.0}{w} \][/tex]
Therefore, the equation [tex]\(l = \frac{k}{w}\)[/tex] fits the pattern in the table, where [tex]\(k = 75.0\)[/tex].
The table provides the following data pairs for width ([tex]\(w\)[/tex]) and length ([tex]\(l\)[/tex]):
[tex]\[ \begin{array}{|c|c|} \hline \text{Width} \, (w) & \text{Length} \, (l) \\ \hline 2 & 37.5 \\ \hline 4 & 18.75 \\ \hline 6 & 12.5 \\ \hline 8 & 9.375 \\ \hline \end{array} \][/tex]
We hypothesize that the relationship between [tex]\(w\)[/tex] and [tex]\(l\)[/tex] follows the equation [tex]\(l = \frac{k}{w}\)[/tex], where [tex]\(k\)[/tex] is a constant.
To verify this, we need to calculate the product [tex]\(l \cdot w\)[/tex] for each pair of values provided in the table and check if the product remains constant.
[tex]\[ \begin{align*} (2, 37.5) &: 2 \cdot 37.5 = 75.0 \\ (4, 18.75) &: 4 \cdot 18.75 = 75.0 \\ (6, 12.5) &: 6 \cdot 12.5 = 75.0 \\ (8, 9.375) &: 8 \cdot 9.375 = 75.0 \\ \end{align*} \][/tex]
Since the product [tex]\(l \cdot w\)[/tex] is 75.0 for each pair, it confirms that [tex]\(k = 75.0\)[/tex]. This means the relationship between the width [tex]\(w\)[/tex] and the length [tex]\(l\)[/tex] is indeed described by the equation [tex]\(l = \frac{k}{w}\)[/tex], with [tex]\(k = 75.0\)[/tex].
Thus, the correct equation to represent the relationship between the width and the length of the rectangle, given the data in the table, is:
[tex]\[ l = \frac{75.0}{w} \][/tex]
Therefore, the equation [tex]\(l = \frac{k}{w}\)[/tex] fits the pattern in the table, where [tex]\(k = 75.0\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.