At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Arc CD is [tex][tex]$\frac{2}{3}$[/tex][/tex] of the circumference of a circle. What is the radian measure of the central angle?

A. [tex][tex]$\frac{2 \pi}{3}$[/tex][/tex] radians
B. [tex][tex]$\frac{3 \pi}{4}$[/tex][/tex] radians
C. [tex][tex]$\frac{4 \pi}{3}$[/tex][/tex] radians
D. [tex][tex]$\frac{3 \pi}{2}$[/tex][/tex] radians


Sagot :

To determine the radian measure of the central angle corresponding to Arc CD, which is [tex]\(\frac{2}{3}\)[/tex] of the circumference of a circle, we can follow these steps:

1. Understand the Relationship Between Arc Length and Central Angle:
The circumference of a entire circle creates a central angle of [tex]\(2\pi\)[/tex] radians. Since Arc CD is given as [tex]\(\frac{2}{3}\)[/tex] of the full circumference, the central angle subtended by Arc CD will be [tex]\(\frac{2}{3}\)[/tex] of [tex]\(2\pi\)[/tex] radians.

2. Calculate the Central Angle:
[tex]\[ \text{Central Angle} = \frac{2}{3} \times 2\pi \][/tex]

3. Simplify the Expression:
[tex]\[ \text{Central Angle} = \frac{4\pi}{3} \][/tex]

4. Match the Result to the Given Choices:
Given the options, [tex]\(\frac{2\pi}{3}\)[/tex] radians, [tex]\(\frac{3\pi}{4}\)[/tex] radians, [tex]\(\frac{4\pi}{3}\)[/tex] radians, and [tex]\(\frac{3\pi}{2}\)[/tex] radians, the correct choice is:

[tex]\[ \frac{4\pi}{3} \text{ radians} \][/tex]

Therefore, the radian measure of the central angle is [tex]\(\frac{4\pi}{3}\)[/tex] radians, and this corresponds to the third option in the given choices.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.