Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find a polynomial function of degree 3 with the given numbers as zeros and a leading coefficient of 1, we start by noting that the given zeros are [tex]\(-1\)[/tex], [tex]\(2i\)[/tex], and [tex]\(-2i\)[/tex].
Let's denote the polynomial function by [tex]\( f(x) \)[/tex]. Since the given numbers are the zeros of the polynomial, the polynomial can be written as a product of linear factors associated with each zero. Specifically, the polynomial can be written as:
[tex]\[ f(x) = (x - (-1))(x - 2i)(x + 2i) \][/tex]
[tex]\[ f(x) = (x + 1)(x - 2i)(x + 2i) \][/tex]
Next, we need to simplify this expression by first handling the complex conjugates [tex]\( (x - 2i)(x + 2i) \)[/tex]. Notice that the product of a complex number and its conjugate is always a real number:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 \][/tex]
Since [tex]\( (2i)^2 = 4(-1) = -4 \)[/tex], we get:
[tex]\[ x^2 - (-4) = x^2 + 4 \][/tex]
Now our polynomial becomes:
[tex]\[ f(x) = (x + 1)(x^2 + 4) \][/tex]
Next, we expand this polynomial:
[tex]\[ f(x) = x(x^2 + 4) + 1(x^2 + 4) \][/tex]
[tex]\[ f(x) = x^3 + 4x + x^2 + 4 \][/tex]
Finally, rearrange the terms in descending order of exponents to obtain:
[tex]\[ f(x) = x^3 + x^2 + 4x + 4 \][/tex]
Thus, the polynomial function is:
[tex]\[ f(x) = x^3 + x^2 + 4x + 4 \][/tex]
Let's denote the polynomial function by [tex]\( f(x) \)[/tex]. Since the given numbers are the zeros of the polynomial, the polynomial can be written as a product of linear factors associated with each zero. Specifically, the polynomial can be written as:
[tex]\[ f(x) = (x - (-1))(x - 2i)(x + 2i) \][/tex]
[tex]\[ f(x) = (x + 1)(x - 2i)(x + 2i) \][/tex]
Next, we need to simplify this expression by first handling the complex conjugates [tex]\( (x - 2i)(x + 2i) \)[/tex]. Notice that the product of a complex number and its conjugate is always a real number:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 \][/tex]
Since [tex]\( (2i)^2 = 4(-1) = -4 \)[/tex], we get:
[tex]\[ x^2 - (-4) = x^2 + 4 \][/tex]
Now our polynomial becomes:
[tex]\[ f(x) = (x + 1)(x^2 + 4) \][/tex]
Next, we expand this polynomial:
[tex]\[ f(x) = x(x^2 + 4) + 1(x^2 + 4) \][/tex]
[tex]\[ f(x) = x^3 + 4x + x^2 + 4 \][/tex]
Finally, rearrange the terms in descending order of exponents to obtain:
[tex]\[ f(x) = x^3 + x^2 + 4x + 4 \][/tex]
Thus, the polynomial function is:
[tex]\[ f(x) = x^3 + x^2 + 4x + 4 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.