At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the polynomial function with the specified properties, we'll follow these steps:
1. Identify the zeros and their multiplicities:
- A zero at [tex]\( x = -4 \)[/tex] with multiplicity 3 means that [tex]\( (x + 4) \)[/tex] appears three times as a factor.
- A zero at [tex]\( x = 0 \)[/tex] with multiplicity 1 means that [tex]\( x \)[/tex] appears once as a factor.
2. Form the polynomial using these factors:
- For [tex]\( x = -4 \)[/tex] with multiplicity 3, the factor is [tex]\( (x + 4)^3 \)[/tex].
- For [tex]\( x = 0 \)[/tex] with multiplicity 1, the factor is [tex]\( x \)[/tex].
3. Combine these factors to form the polynomial:
[tex]\[ f(x) = x \cdot (x + 4)^3 \][/tex]
4. Expand the polynomial to express it in standard form:
First, expand [tex]\( (x + 4)^3 \)[/tex]. Using the binomial theorem:
[tex]\[ (x + 4)^3 = x^3 + 3 \cdot 4x^2 + 3 \cdot 4^2x + 4^3 \][/tex]
[tex]\[ (x + 4)^3 = x^3 + 12x^2 + 48x + 64 \][/tex]
Next, multiply this result by [tex]\( x \)[/tex]:
[tex]\[ f(x) = x \cdot (x^3 + 12x^2 + 48x + 64) \][/tex]
[tex]\[ f(x) = x^4 + 12x^3 + 48x^2 + 64x \][/tex]
Therefore, the polynomial function in expanded form is:
[tex]\[ f(x) = x^4 + 12x^3 + 48x^2 + 64x \][/tex]
This is the polynomial of degree 4 with the given zeros and their specified multiplicities.
1. Identify the zeros and their multiplicities:
- A zero at [tex]\( x = -4 \)[/tex] with multiplicity 3 means that [tex]\( (x + 4) \)[/tex] appears three times as a factor.
- A zero at [tex]\( x = 0 \)[/tex] with multiplicity 1 means that [tex]\( x \)[/tex] appears once as a factor.
2. Form the polynomial using these factors:
- For [tex]\( x = -4 \)[/tex] with multiplicity 3, the factor is [tex]\( (x + 4)^3 \)[/tex].
- For [tex]\( x = 0 \)[/tex] with multiplicity 1, the factor is [tex]\( x \)[/tex].
3. Combine these factors to form the polynomial:
[tex]\[ f(x) = x \cdot (x + 4)^3 \][/tex]
4. Expand the polynomial to express it in standard form:
First, expand [tex]\( (x + 4)^3 \)[/tex]. Using the binomial theorem:
[tex]\[ (x + 4)^3 = x^3 + 3 \cdot 4x^2 + 3 \cdot 4^2x + 4^3 \][/tex]
[tex]\[ (x + 4)^3 = x^3 + 12x^2 + 48x + 64 \][/tex]
Next, multiply this result by [tex]\( x \)[/tex]:
[tex]\[ f(x) = x \cdot (x^3 + 12x^2 + 48x + 64) \][/tex]
[tex]\[ f(x) = x^4 + 12x^3 + 48x^2 + 64x \][/tex]
Therefore, the polynomial function in expanded form is:
[tex]\[ f(x) = x^4 + 12x^3 + 48x^2 + 64x \][/tex]
This is the polynomial of degree 4 with the given zeros and their specified multiplicities.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.