Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the domain of the function [tex]\( f(x) = \sqrt{\frac{1}{2} x - 10 + 3} \)[/tex], we need to determine the values of [tex]\( x \)[/tex] for which the expression inside the square root is non-negative. This is because the square root function is only defined for non-negative inputs.
Let's follow the steps to find the appropriate inequality:
1. Start with the given function:
[tex]\[ f(x) = \sqrt{\frac{1}{2} x - 10 + 3} \][/tex]
2. Simplify the expression inside the square root:
[tex]\[ \frac{1}{2} x - 10 + 3 = \frac{1}{2} x - 7 \][/tex]
3. Set the expression inside the square root to be greater than or equal to zero:
[tex]\[ \frac{1}{2} x - 7 \geq 0 \][/tex]
This inequality ensures that the expression inside the square root is non-negative, which is necessary for the function to be defined.
Therefore, the inequality that can be used to find the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ \frac{1}{2} x - 7 \geq 0 \][/tex]
Thus, the correct option from the given choices is:
[tex]\[ \frac{1}{2} x - 10 \geq 0 \][/tex]
Let's follow the steps to find the appropriate inequality:
1. Start with the given function:
[tex]\[ f(x) = \sqrt{\frac{1}{2} x - 10 + 3} \][/tex]
2. Simplify the expression inside the square root:
[tex]\[ \frac{1}{2} x - 10 + 3 = \frac{1}{2} x - 7 \][/tex]
3. Set the expression inside the square root to be greater than or equal to zero:
[tex]\[ \frac{1}{2} x - 7 \geq 0 \][/tex]
This inequality ensures that the expression inside the square root is non-negative, which is necessary for the function to be defined.
Therefore, the inequality that can be used to find the domain of [tex]\( f(x) \)[/tex] is:
[tex]\[ \frac{1}{2} x - 7 \geq 0 \][/tex]
Thus, the correct option from the given choices is:
[tex]\[ \frac{1}{2} x - 10 \geq 0 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.