Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the other zeros of the polynomial function [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex], given that one of the zeros is [tex]\( x = 5 \)[/tex], follow these steps:
1. Identify the Polynomial and Known Zero:
- The polynomial is [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex].
- The known zero of the polynomial is [tex]\( x = 5 \)[/tex].
2. Perform Polynomial Division:
- Since [tex]\( x = 5 \)[/tex] is a known zero, we can divide the polynomial [tex]\( f(x) \)[/tex] by [tex]\( x - 5 \)[/tex] to find the quotient polynomial.
- The division of [tex]\( x^3 - 13x^2 + 60x - 100 \)[/tex] by [tex]\( x - 5 \)[/tex] yields a quotient of [tex]\( x^2 - 8x + 20 \)[/tex].
3. Solve the Quotient Polynomial:
- Set the quotient polynomial equal to zero: [tex]\( x^2 - 8x + 20 = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 20 \)[/tex].
4. Calculate the Discriminant:
- The discriminant [tex]\( \Delta \)[/tex] is calculated as follows:
[tex]\( \Delta = b^2 - 4ac \)[/tex].
- Substituting the values, we get:
[tex]\[ \Delta = (-8)^2 - 4 \cdot 1 \cdot 20 = 64 - 80 = -16 \][/tex]
- Since the discriminant is negative ([tex]\( \Delta = -16 \)[/tex]), the solutions will be complex numbers.
5. Solve for the Complex Zeros:
- Using the quadratic formula with [tex]\( \Delta = -16 \)[/tex]:
[tex]\[ x = \frac{8 \pm \sqrt{-16}}{2 \cdot 1} = \frac{8 \pm 4i}{2} = 4 \pm 2i \][/tex]
6. Identify the Other Zeros:
- The complex zeros are [tex]\( 4 - 2i \)[/tex] and [tex]\( 4 + 2i \)[/tex].
Therefore, the other zeros of the polynomial [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex] are:
[tex]\[ 4 - 2i, 4 + 2i \][/tex]
1. Identify the Polynomial and Known Zero:
- The polynomial is [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex].
- The known zero of the polynomial is [tex]\( x = 5 \)[/tex].
2. Perform Polynomial Division:
- Since [tex]\( x = 5 \)[/tex] is a known zero, we can divide the polynomial [tex]\( f(x) \)[/tex] by [tex]\( x - 5 \)[/tex] to find the quotient polynomial.
- The division of [tex]\( x^3 - 13x^2 + 60x - 100 \)[/tex] by [tex]\( x - 5 \)[/tex] yields a quotient of [tex]\( x^2 - 8x + 20 \)[/tex].
3. Solve the Quotient Polynomial:
- Set the quotient polynomial equal to zero: [tex]\( x^2 - 8x + 20 = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 20 \)[/tex].
4. Calculate the Discriminant:
- The discriminant [tex]\( \Delta \)[/tex] is calculated as follows:
[tex]\( \Delta = b^2 - 4ac \)[/tex].
- Substituting the values, we get:
[tex]\[ \Delta = (-8)^2 - 4 \cdot 1 \cdot 20 = 64 - 80 = -16 \][/tex]
- Since the discriminant is negative ([tex]\( \Delta = -16 \)[/tex]), the solutions will be complex numbers.
5. Solve for the Complex Zeros:
- Using the quadratic formula with [tex]\( \Delta = -16 \)[/tex]:
[tex]\[ x = \frac{8 \pm \sqrt{-16}}{2 \cdot 1} = \frac{8 \pm 4i}{2} = 4 \pm 2i \][/tex]
6. Identify the Other Zeros:
- The complex zeros are [tex]\( 4 - 2i \)[/tex] and [tex]\( 4 + 2i \)[/tex].
Therefore, the other zeros of the polynomial [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex] are:
[tex]\[ 4 - 2i, 4 + 2i \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.