Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Given that the polynomial function has the given zero, find the other zeros.

[tex]\[ f(x) = x^3 - 13x^2 + 60x - 100 \quad ; \quad 5 \][/tex]

The other zero(s) is/are [tex]$\square$[/tex]

(Do not factor. Use a comma to separate answers as needed. Express complex numbers in terms of [tex]$i$[/tex]. Type each solution only once.)


Sagot :

To determine the other zeros of the polynomial function [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex], given that one of the zeros is [tex]\( x = 5 \)[/tex], follow these steps:

1. Identify the Polynomial and Known Zero:
- The polynomial is [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex].
- The known zero of the polynomial is [tex]\( x = 5 \)[/tex].

2. Perform Polynomial Division:
- Since [tex]\( x = 5 \)[/tex] is a known zero, we can divide the polynomial [tex]\( f(x) \)[/tex] by [tex]\( x - 5 \)[/tex] to find the quotient polynomial.
- The division of [tex]\( x^3 - 13x^2 + 60x - 100 \)[/tex] by [tex]\( x - 5 \)[/tex] yields a quotient of [tex]\( x^2 - 8x + 20 \)[/tex].

3. Solve the Quotient Polynomial:
- Set the quotient polynomial equal to zero: [tex]\( x^2 - 8x + 20 = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 20 \)[/tex].

4. Calculate the Discriminant:
- The discriminant [tex]\( \Delta \)[/tex] is calculated as follows:
[tex]\( \Delta = b^2 - 4ac \)[/tex].
- Substituting the values, we get:
[tex]\[ \Delta = (-8)^2 - 4 \cdot 1 \cdot 20 = 64 - 80 = -16 \][/tex]
- Since the discriminant is negative ([tex]\( \Delta = -16 \)[/tex]), the solutions will be complex numbers.

5. Solve for the Complex Zeros:
- Using the quadratic formula with [tex]\( \Delta = -16 \)[/tex]:
[tex]\[ x = \frac{8 \pm \sqrt{-16}}{2 \cdot 1} = \frac{8 \pm 4i}{2} = 4 \pm 2i \][/tex]

6. Identify the Other Zeros:
- The complex zeros are [tex]\( 4 - 2i \)[/tex] and [tex]\( 4 + 2i \)[/tex].

Therefore, the other zeros of the polynomial [tex]\( f(x) = x^3 - 13x^2 + 60x - 100 \)[/tex] are:

[tex]\[ 4 - 2i, 4 + 2i \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.