Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, let's break it down step-by-step:
1. Height of the Pyramid:
The length of the base edge of the pyramid is given as [tex]\( x \)[/tex].
The height of the pyramid is 3 times this base edge length. Therefore, the height of the pyramid is:
[tex]\[ 3x \][/tex]
2. Area of an Equilateral Triangle:
The area of an equilateral triangle with side length [tex]\( x \)[/tex] is given by:
[tex]\[ \frac{x^2 \sqrt{3}}{4} \][/tex]
3. Area of the Hexagon Base:
A regular hexagon can be divided into 6 equilateral triangles. Therefore, the total area of the hexagon base is 6 times the area of one equilateral triangle:
[tex]\[ 6 \times \frac{x^2 \sqrt{3}}{4} = \frac{6x^2 \sqrt{3}}{4} = \frac{3x^2 \sqrt{3}}{2} \][/tex]
4. Volume of the Pyramid:
The volume of a pyramid is given by:
[tex]\[ \text{Volume} = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
Substituting the known values:
[tex]\[ \text{Volume} = \frac{1}{3} \times \left( \frac{3x^2 \sqrt{3}}{2} \right) \times 3x \][/tex]
Simplify the expression:
[tex]\[ \text{Volume} = \frac{1}{3} \times \frac{3x^2 \sqrt{3}}{2} \times 3x = \frac{3 \times 3 x^3 \sqrt{3}}{2 \times 3} = \frac{9x^3 \sqrt{3}}{6} = \frac{3x^3 \sqrt{3}}{2} \][/tex]
So, the detailed answers are:
- The height of the pyramid is [tex]\( 3x \)[/tex].
- The area of an equilateral triangle with side length [tex]\( x \)[/tex] is [tex]\( \frac{x^2 \sqrt{3}}{4} \)[/tex] square units.
- The area of the hexagon base is [tex]\( \frac{3x^2 \sqrt{3}}{2} \)[/tex] square units.
- The volume of the pyramid is [tex]\( \frac{3x^3 \sqrt{3}}{2} \)[/tex] cubic units.
1. Height of the Pyramid:
The length of the base edge of the pyramid is given as [tex]\( x \)[/tex].
The height of the pyramid is 3 times this base edge length. Therefore, the height of the pyramid is:
[tex]\[ 3x \][/tex]
2. Area of an Equilateral Triangle:
The area of an equilateral triangle with side length [tex]\( x \)[/tex] is given by:
[tex]\[ \frac{x^2 \sqrt{3}}{4} \][/tex]
3. Area of the Hexagon Base:
A regular hexagon can be divided into 6 equilateral triangles. Therefore, the total area of the hexagon base is 6 times the area of one equilateral triangle:
[tex]\[ 6 \times \frac{x^2 \sqrt{3}}{4} = \frac{6x^2 \sqrt{3}}{4} = \frac{3x^2 \sqrt{3}}{2} \][/tex]
4. Volume of the Pyramid:
The volume of a pyramid is given by:
[tex]\[ \text{Volume} = \frac{1}{3} \times \text{Base Area} \times \text{Height} \][/tex]
Substituting the known values:
[tex]\[ \text{Volume} = \frac{1}{3} \times \left( \frac{3x^2 \sqrt{3}}{2} \right) \times 3x \][/tex]
Simplify the expression:
[tex]\[ \text{Volume} = \frac{1}{3} \times \frac{3x^2 \sqrt{3}}{2} \times 3x = \frac{3 \times 3 x^3 \sqrt{3}}{2 \times 3} = \frac{9x^3 \sqrt{3}}{6} = \frac{3x^3 \sqrt{3}}{2} \][/tex]
So, the detailed answers are:
- The height of the pyramid is [tex]\( 3x \)[/tex].
- The area of an equilateral triangle with side length [tex]\( x \)[/tex] is [tex]\( \frac{x^2 \sqrt{3}}{4} \)[/tex] square units.
- The area of the hexagon base is [tex]\( \frac{3x^2 \sqrt{3}}{2} \)[/tex] square units.
- The volume of the pyramid is [tex]\( \frac{3x^3 \sqrt{3}}{2} \)[/tex] cubic units.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.