Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The four diagonals of a cube are drawn to create 6 square pyramids with the same base and height. The volume of the cube is [tex](b)(b)(b)[/tex]. The height of each pyramid is [tex]h[/tex].

Therefore, the volume of one pyramid must equal one-sixth the volume of the cube, or:

A. [tex]\frac{1}{6}(b)(b)(2h)[/tex] or [tex]\frac{1}{3}Bh[/tex]
B. [tex]\frac{1}{6}(b)(b)(6h)[/tex] or [tex]Bh[/tex]
C. [tex]\frac{1}{3}(b)(b)(6h)[/tex] or [tex]\frac{1}{3}Bh[/tex]
D. [tex]\frac{1}{3}(b)(b)(2h)[/tex] or [tex]\frac{2}{3}Bh[/tex]


Sagot :

Let's break down the problem and find the volume of one pyramid based on the given conditions.

Given:
- The cube has a volume of [tex]\( b^3 \)[/tex].
- The cube is divided into 6 pyramids with equal bases and heights.
- The height of each pyramid is [tex]\( h \)[/tex].

First, we must determine the volume of one pyramid. The volume of the cube is [tex]\( b \times b \times b = b^3 \)[/tex]. Since the 6 pyramids together make up the entire volume of the cube, each pyramid's volume would be one-sixth of the cube's volume:

[tex]\[ \text{Volume of one pyramid} = \frac{b^3}{6} \][/tex]

We know the volume of a pyramid is calculated using the formula:

[tex]\[ \text{Volume of a pyramid} = \frac{1}{3} \times (\text{Base Area}) \times (\text{Height}) \][/tex]

Here, the base area [tex]\( B \)[/tex] of each pyramid is [tex]\( b \times b = b^2 \)[/tex] and the height of each pyramid is [tex]\( h \)[/tex]. Using this information, let's evaluate the provided options for the volume expressions to check which one matches [tex]\( \frac{b^3}{6} \)[/tex].

1. [tex]\(\frac{1}{6}(b)(b)(2h)\)[/tex]:
[tex]\[ \frac{1}{6} b^2 \times 2h = \frac{1}{6} \times 2b^2h = \frac{2b^2h}{6} = \frac{b^2h}{3} \][/tex]
This option simplifies to [tex]\( \frac{b^2h}{3} \)[/tex], which matches [tex]\( \frac{1}{3} Bh \)[/tex].

2. [tex]\(\frac{1}{6}(b)(b)(6h)\)[/tex]:
[tex]\[ \frac{1}{6} b^2 \times 6h = \frac{1}{6} \times 6b^2h = b^2h \][/tex]
This option simplifies to [tex]\( b^2h \)[/tex], which matches [tex]\( Bh \)[/tex].

3. [tex]\(\frac{1}{3}(b)(b)(6h)\)[/tex]:
[tex]\[ \frac{1}{3} b^2 \times 6h = \frac{1}{3} \times 6b^2h = 2b^2h \][/tex]
This option simplifies to [tex]\( 2b^2h \)[/tex], which is significantly larger than the expected volume.

4. [tex]\(\frac{1}{3}(b)(b)(2h)\)[/tex]:
[tex]\[ \frac{1}{3} b^2 \times 2h = \frac{1}{3} \times 2b^2h = \frac{2b^2h}{3} \][/tex]
This option simplifies to [tex]\( \frac{2b^2h}{3} \)[/tex], which matches [tex]\( \frac{2}{3} Bh \)[/tex].

Thus, the correct expression for the volume of one pyramid, which matches [tex]\( \frac{b^3}{6} \)[/tex] correctly, is given by:

[tex]\[ \text{Volume of one pyramid} = b^2h \][/tex]

Therefore, the volume of one pyramid must equal [tex]\( \frac{1}{6}(b)(b)(6h) \)[/tex] or [tex]\( Bh \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.