Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To graph the linear inequality [tex]\(\frac{1}{2}x - 2y > -6\)[/tex], follow these detailed steps:
1. Start with the inequality:
[tex]\[ \frac{1}{2}x - 2y > -6 \][/tex]
2. Isolate [tex]\( y \)[/tex]:
First, we need to manipulate the inequality to get [tex]\( y \)[/tex] on one side.
Step 1: Move the term involving [tex]\( y \)[/tex] to the other side by adding [tex]\( 6 \)[/tex]:
[tex]\[ \frac{1}{2}x - 2y + 6 > 0 \][/tex]
Step 2: Subtract [tex]\(\frac{1}{2}x\)[/tex] from both sides to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ -2y > -\frac{1}{2}x + 6 \][/tex]
Step 3: Divide both sides by [tex]\(-2\)[/tex]. Remember that dividing or multiplying by a negative number reverses the inequality sign:
[tex]\[ y < \frac{1}{4}x - 3 \][/tex]
3. Graph the boundary line:
The inequality [tex]\( y < \frac{1}{4}x - 3 \)[/tex] corresponds to a boundary line given by the equation [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
- Plot the line [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
- Since the original inequality is a strict inequality ( [tex]\( < \)[/tex] and not [tex]\( \leq \)[/tex]), the line will be dashed, indicating that points on the line are not included in the solution.
4. Identify the region to shade:
After plotting the dashed boundary line, determine which side of the line represents the solution to the inequality.
- Pick a test point that is not on the line, such as the origin [tex]\((0, 0)\)[/tex].
- Substitute [tex]\((0, 0)\)[/tex] into the inequality [tex]\( y < \frac{1}{4}(0) - 3 \)[/tex]:
[tex]\[ 0 < -3 \][/tex]
This statement is false, so the region that does not include the origin is the solution region.
- Thus, you should shade the region below the dashed line [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
By following these steps, the graph of the linear inequality [tex]\(\frac{1}{2}x-2y > -6\)[/tex] is represented by the region below the dashed line [tex]\( y < \frac{1}{4}x - 3 \)[/tex].
1. Start with the inequality:
[tex]\[ \frac{1}{2}x - 2y > -6 \][/tex]
2. Isolate [tex]\( y \)[/tex]:
First, we need to manipulate the inequality to get [tex]\( y \)[/tex] on one side.
Step 1: Move the term involving [tex]\( y \)[/tex] to the other side by adding [tex]\( 6 \)[/tex]:
[tex]\[ \frac{1}{2}x - 2y + 6 > 0 \][/tex]
Step 2: Subtract [tex]\(\frac{1}{2}x\)[/tex] from both sides to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ -2y > -\frac{1}{2}x + 6 \][/tex]
Step 3: Divide both sides by [tex]\(-2\)[/tex]. Remember that dividing or multiplying by a negative number reverses the inequality sign:
[tex]\[ y < \frac{1}{4}x - 3 \][/tex]
3. Graph the boundary line:
The inequality [tex]\( y < \frac{1}{4}x - 3 \)[/tex] corresponds to a boundary line given by the equation [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
- Plot the line [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
- Since the original inequality is a strict inequality ( [tex]\( < \)[/tex] and not [tex]\( \leq \)[/tex]), the line will be dashed, indicating that points on the line are not included in the solution.
4. Identify the region to shade:
After plotting the dashed boundary line, determine which side of the line represents the solution to the inequality.
- Pick a test point that is not on the line, such as the origin [tex]\((0, 0)\)[/tex].
- Substitute [tex]\((0, 0)\)[/tex] into the inequality [tex]\( y < \frac{1}{4}(0) - 3 \)[/tex]:
[tex]\[ 0 < -3 \][/tex]
This statement is false, so the region that does not include the origin is the solution region.
- Thus, you should shade the region below the dashed line [tex]\( y = \frac{1}{4}x - 3 \)[/tex].
By following these steps, the graph of the linear inequality [tex]\(\frac{1}{2}x-2y > -6\)[/tex] is represented by the region below the dashed line [tex]\( y < \frac{1}{4}x - 3 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.