Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we need to find the magnitude of the force of tension, given that the net force in the [tex]\( x \)[/tex]-direction is [tex]\( 98 \, \text{N} \)[/tex] and the ramp makes an angle of [tex]\( 22^\circ \)[/tex] with the horizontal.
1. Understanding the given data:
- The angle of the ramp, [tex]\(\theta\)[/tex], is [tex]\( 22^\circ \)[/tex].
- The net force in the [tex]\( x \)[/tex]-direction, [tex]\( F_{\text{net},x} \)[/tex], is [tex]\( 98 \, \text{N} \)[/tex].
2. Relate the net force to the tension force:
- The net force in the [tex]\( x \)[/tex]-direction is the component of the tension force (T) along the ramp direction.
- This relationship can be expressed as: [tex]\( F_{\text{net},x} = T \cos(\theta) \)[/tex].
3. Rearrange the formula to solve for the tension force (T):
- [tex]\( T = \frac{F_{\text{net},x}}{\cos(\theta)} \)[/tex].
4. Convert the angle from degrees to radians for accurate computation in trigonometric functions:
- [tex]\( \theta = 22^\circ \)[/tex] is equivalent to [tex]\( 0.383972435 \)[/tex] radians.
5. Calculate the tension force:
- Using the provided data, [tex]\( T \approx 105.69640478240318 \)[/tex].
Hence, the magnitude of the force of tension is approximately [tex]\( 105.696 \, \text{N} \)[/tex], which does not exactly match any of the given multiple-choice options but is closest to [tex]\( 57 \, \text{N} \)[/tex]. Given that this could be a trick or conceptual error in the problem options themselves, ensure to verify if any additional detail or conversion was intended in the problem.
1. Understanding the given data:
- The angle of the ramp, [tex]\(\theta\)[/tex], is [tex]\( 22^\circ \)[/tex].
- The net force in the [tex]\( x \)[/tex]-direction, [tex]\( F_{\text{net},x} \)[/tex], is [tex]\( 98 \, \text{N} \)[/tex].
2. Relate the net force to the tension force:
- The net force in the [tex]\( x \)[/tex]-direction is the component of the tension force (T) along the ramp direction.
- This relationship can be expressed as: [tex]\( F_{\text{net},x} = T \cos(\theta) \)[/tex].
3. Rearrange the formula to solve for the tension force (T):
- [tex]\( T = \frac{F_{\text{net},x}}{\cos(\theta)} \)[/tex].
4. Convert the angle from degrees to radians for accurate computation in trigonometric functions:
- [tex]\( \theta = 22^\circ \)[/tex] is equivalent to [tex]\( 0.383972435 \)[/tex] radians.
5. Calculate the tension force:
- Using the provided data, [tex]\( T \approx 105.69640478240318 \)[/tex].
Hence, the magnitude of the force of tension is approximately [tex]\( 105.696 \, \text{N} \)[/tex], which does not exactly match any of the given multiple-choice options but is closest to [tex]\( 57 \, \text{N} \)[/tex]. Given that this could be a trick or conceptual error in the problem options themselves, ensure to verify if any additional detail or conversion was intended in the problem.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.