Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve this step-by-step:
The given function representing the mass remaining after [tex]\( t \)[/tex] years is:
[tex]\[ m(t) = 330e^{-0.03t} \][/tex]
where [tex]\( m(t) \)[/tex] is in grams.
### Part (a): Find the mass at time [tex]\( t = 0 \)[/tex]
To find the mass at time [tex]\( t = 0 \)[/tex], substitute [tex]\( t = 0 \)[/tex] into the given function:
[tex]\[ m(0) = 330e^{-0.03 \cdot 0} \][/tex]
Since any number raised to the power of 0 is 1:
[tex]\[ m(0) = 330e^0 \][/tex]
[tex]\[ m(0) = 330 \times 1 \][/tex]
[tex]\[ m(0) = 330 \][/tex]
So, the mass at time [tex]\( t = 0 \)[/tex] is:
[tex]\[ \boxed{330.0 \text{ grams}} \][/tex]
### Part (b): How much of the mass remains after 20 years?
To determine the mass remaining after 20 years, substitute [tex]\( t = 20 \)[/tex] into the function:
[tex]\[ m(20) = 330e^{-0.03 \cdot 20} \][/tex]
Let's simplify the exponent first:
[tex]\[ -0.03 \cdot 20 = -0.6 \][/tex]
Now, substitute back into the equation:
[tex]\[ m(20) = 330e^{-0.6} \][/tex]
By evaluating [tex]\( e^{-0.6} \)[/tex] and then multiplying by 330, we find:
[tex]\[ m(20) \approx 181.1 \][/tex]
So, the mass after 20 years is:
[tex]\[ \boxed{181.1 \text{ grams}} \][/tex]
### Summary:
- (a) The mass at time [tex]\( t = 0 \)[/tex] is [tex]\( 330.0 \)[/tex] grams.
- (b) The mass remaining after 20 years is [tex]\( 181.1 \)[/tex] grams.
Both answers have been rounded to 1 decimal place as required.
The given function representing the mass remaining after [tex]\( t \)[/tex] years is:
[tex]\[ m(t) = 330e^{-0.03t} \][/tex]
where [tex]\( m(t) \)[/tex] is in grams.
### Part (a): Find the mass at time [tex]\( t = 0 \)[/tex]
To find the mass at time [tex]\( t = 0 \)[/tex], substitute [tex]\( t = 0 \)[/tex] into the given function:
[tex]\[ m(0) = 330e^{-0.03 \cdot 0} \][/tex]
Since any number raised to the power of 0 is 1:
[tex]\[ m(0) = 330e^0 \][/tex]
[tex]\[ m(0) = 330 \times 1 \][/tex]
[tex]\[ m(0) = 330 \][/tex]
So, the mass at time [tex]\( t = 0 \)[/tex] is:
[tex]\[ \boxed{330.0 \text{ grams}} \][/tex]
### Part (b): How much of the mass remains after 20 years?
To determine the mass remaining after 20 years, substitute [tex]\( t = 20 \)[/tex] into the function:
[tex]\[ m(20) = 330e^{-0.03 \cdot 20} \][/tex]
Let's simplify the exponent first:
[tex]\[ -0.03 \cdot 20 = -0.6 \][/tex]
Now, substitute back into the equation:
[tex]\[ m(20) = 330e^{-0.6} \][/tex]
By evaluating [tex]\( e^{-0.6} \)[/tex] and then multiplying by 330, we find:
[tex]\[ m(20) \approx 181.1 \][/tex]
So, the mass after 20 years is:
[tex]\[ \boxed{181.1 \text{ grams}} \][/tex]
### Summary:
- (a) The mass at time [tex]\( t = 0 \)[/tex] is [tex]\( 330.0 \)[/tex] grams.
- (b) The mass remaining after 20 years is [tex]\( 181.1 \)[/tex] grams.
Both answers have been rounded to 1 decimal place as required.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.