At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To analyze the situation where a lab cart of mass [tex]\(15 \, \text{kg}\)[/tex] is moving with a constant velocity [tex]\(v_i\)[/tex] and a [tex]\(2 \, \text{kg}\)[/tex] mass is dropped into it from directly above, let's use the principle of conservation of momentum. Here is a step-by-step solution:
1. Identify the Initial Momentum:
- The initial momentum of the system is purely due to the moving cart, as the [tex]\(2 \, \text{kg}\)[/tex] mass is just dropped directly into the cart from rest.
- The cart's initial momentum:
[tex]\[ P_{\text{cart, initial}} = 15 \, \text{kg} \cdot v_i \][/tex]
- Since the [tex]\(2 \, \text{kg}\)[/tex] mass has no initial horizontal velocity, its initial momentum is zero:
[tex]\[ P_{\text{mass, initial}} = 2 \, \text{kg} \cdot 0 = 0 \][/tex]
- Therefore, the total initial momentum [tex]\(P_{\text{initial}}\)[/tex] is:
[tex]\[ P_{\text{initial}} = 15 \, \text{kg} \cdot v_i + 2 \, \text{kg} \cdot 0 \][/tex]
[tex]\[ P_{\text{initial}} = 15 v_i \][/tex]
2. Identify the Final Momentum:
- After the mass is dropped into the cart, the total mass of the cart system becomes:
[tex]\[ \text{Total mass} = 15 \, \text{kg} + 2 \, \text{kg} = 17 \, \text{kg} \][/tex]
- Let [tex]\(v_f\)[/tex] be the final velocity of the cart system after the mass is dropped.
- The final momentum of the system:
[tex]\[ P_{\text{final}} = \text{Total mass} \cdot v_f = 17 \, \text{kg} \cdot v_f \][/tex]
3. Apply the Conservation of Momentum:
- According to the law of conservation of momentum, the total initial momentum must equal the total final momentum:
[tex]\[ P_{\text{initial}} = P_{\text{final}} \][/tex]
[tex]\[ 15 v_i = 17 v_f \][/tex]
Given these steps, we can now evaluate the provided options to find the equation that best represents the horizontal momentum:
[tex]\[ \begin{align*} \text{Option 1:}\quad & 15 v_i + 2 v_i = 15(0) + 2 v_i \quad \implies \text{Incorrect (initial mass terms do not match)} \\ \text{Option 2:}\quad & 15 v_i + 2(0) = 15 v_t + 2(0) \quad \implies \text{Incorrect (missing total mass change)} \\ \text{Option 3:}\quad & 15 v_i + 2(0) = (15 + 2) v_f \quad \implies \text{Correct (conservation of momentum correctly stated)} \\ \text{Option 4:}\quad & 15(0) + 2 v_i = (15 + 2) v_t \quad \implies \text{Incorrect (initial state does not match scenario)} \end{align*} \][/tex]
Therefore, the equation that best represents the horizontal momentum in this situation is:
[tex]\[15 v_i + 2(0) = (15 + 2) v_f\][/tex]
So, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
1. Identify the Initial Momentum:
- The initial momentum of the system is purely due to the moving cart, as the [tex]\(2 \, \text{kg}\)[/tex] mass is just dropped directly into the cart from rest.
- The cart's initial momentum:
[tex]\[ P_{\text{cart, initial}} = 15 \, \text{kg} \cdot v_i \][/tex]
- Since the [tex]\(2 \, \text{kg}\)[/tex] mass has no initial horizontal velocity, its initial momentum is zero:
[tex]\[ P_{\text{mass, initial}} = 2 \, \text{kg} \cdot 0 = 0 \][/tex]
- Therefore, the total initial momentum [tex]\(P_{\text{initial}}\)[/tex] is:
[tex]\[ P_{\text{initial}} = 15 \, \text{kg} \cdot v_i + 2 \, \text{kg} \cdot 0 \][/tex]
[tex]\[ P_{\text{initial}} = 15 v_i \][/tex]
2. Identify the Final Momentum:
- After the mass is dropped into the cart, the total mass of the cart system becomes:
[tex]\[ \text{Total mass} = 15 \, \text{kg} + 2 \, \text{kg} = 17 \, \text{kg} \][/tex]
- Let [tex]\(v_f\)[/tex] be the final velocity of the cart system after the mass is dropped.
- The final momentum of the system:
[tex]\[ P_{\text{final}} = \text{Total mass} \cdot v_f = 17 \, \text{kg} \cdot v_f \][/tex]
3. Apply the Conservation of Momentum:
- According to the law of conservation of momentum, the total initial momentum must equal the total final momentum:
[tex]\[ P_{\text{initial}} = P_{\text{final}} \][/tex]
[tex]\[ 15 v_i = 17 v_f \][/tex]
Given these steps, we can now evaluate the provided options to find the equation that best represents the horizontal momentum:
[tex]\[ \begin{align*} \text{Option 1:}\quad & 15 v_i + 2 v_i = 15(0) + 2 v_i \quad \implies \text{Incorrect (initial mass terms do not match)} \\ \text{Option 2:}\quad & 15 v_i + 2(0) = 15 v_t + 2(0) \quad \implies \text{Incorrect (missing total mass change)} \\ \text{Option 3:}\quad & 15 v_i + 2(0) = (15 + 2) v_f \quad \implies \text{Correct (conservation of momentum correctly stated)} \\ \text{Option 4:}\quad & 15(0) + 2 v_i = (15 + 2) v_t \quad \implies \text{Incorrect (initial state does not match scenario)} \end{align*} \][/tex]
Therefore, the equation that best represents the horizontal momentum in this situation is:
[tex]\[15 v_i + 2(0) = (15 + 2) v_f\][/tex]
So, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.