Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the [tex]\( x \)[/tex]-component of the total force acting on the block, we need to break down each force into its [tex]\( x \)[/tex]-components and then sum these components.
1. Identify the given forces and their angles:
- Force [tex]\( F_1 = 115 \, \text{N} \)[/tex] at an angle [tex]\( \theta_1 = 75.0^\circ \)[/tex]
- Force [tex]\( F_2 = 213 \, \text{N} \)[/tex] at an angle [tex]\( \theta_2 = 295^\circ \)[/tex]
2. Convert the angles from degrees to radians:
For calculations in trigonometry:
- [tex]\( \theta_1 \)[/tex] in radians is [tex]\( \theta_1 = 75.0 \times \frac{\pi}{180} \)[/tex]
- [tex]\( \theta_2 \)[/tex] in radians is [tex]\( \theta_2 = 295 \times \frac{\pi}{180} \)[/tex]
3. Calculate the [tex]\( x \)[/tex]-component for each force using the cosine function:
- For [tex]\( F_1 \)[/tex]:
[tex]\[ F_{1x} = F_1 \cos(\theta_1) \][/tex]
Plugging in the values:
[tex]\[ F_{1x} = 115 \cos(75.0^\circ) \approx 29.76 \, \text{N} \][/tex]
- For [tex]\( F_2 \)[/tex]:
[tex]\[ F_{2x} = F_2 \cos(\theta_2) \][/tex]
Plugging in the values:
[tex]\[ F_{2x} = 213 \cos(295^\circ) \approx 90.02 \, \text{N} \][/tex]
4. Sum the [tex]\( x \)[/tex]-components of both forces to get the total [tex]\( x \)[/tex]-component:
[tex]\[ F_{x_{\text{total}}} = F_{1x} + F_{2x} \][/tex]
Plugging in the calculated components:
[tex]\[ F_{x_{\text{total}}} = 29.76 \, \text{N} + 90.02 \, \text{N} \approx 119.78 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the total force acting on the block is approximately [tex]\( 119.78 \, \text{N} \)[/tex].
1. Identify the given forces and their angles:
- Force [tex]\( F_1 = 115 \, \text{N} \)[/tex] at an angle [tex]\( \theta_1 = 75.0^\circ \)[/tex]
- Force [tex]\( F_2 = 213 \, \text{N} \)[/tex] at an angle [tex]\( \theta_2 = 295^\circ \)[/tex]
2. Convert the angles from degrees to radians:
For calculations in trigonometry:
- [tex]\( \theta_1 \)[/tex] in radians is [tex]\( \theta_1 = 75.0 \times \frac{\pi}{180} \)[/tex]
- [tex]\( \theta_2 \)[/tex] in radians is [tex]\( \theta_2 = 295 \times \frac{\pi}{180} \)[/tex]
3. Calculate the [tex]\( x \)[/tex]-component for each force using the cosine function:
- For [tex]\( F_1 \)[/tex]:
[tex]\[ F_{1x} = F_1 \cos(\theta_1) \][/tex]
Plugging in the values:
[tex]\[ F_{1x} = 115 \cos(75.0^\circ) \approx 29.76 \, \text{N} \][/tex]
- For [tex]\( F_2 \)[/tex]:
[tex]\[ F_{2x} = F_2 \cos(\theta_2) \][/tex]
Plugging in the values:
[tex]\[ F_{2x} = 213 \cos(295^\circ) \approx 90.02 \, \text{N} \][/tex]
4. Sum the [tex]\( x \)[/tex]-components of both forces to get the total [tex]\( x \)[/tex]-component:
[tex]\[ F_{x_{\text{total}}} = F_{1x} + F_{2x} \][/tex]
Plugging in the calculated components:
[tex]\[ F_{x_{\text{total}}} = 29.76 \, \text{N} + 90.02 \, \text{N} \approx 119.78 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the total force acting on the block is approximately [tex]\( 119.78 \, \text{N} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.