Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the [tex]\( x \)[/tex]-component of the total force acting on the block, we need to break down each force into its [tex]\( x \)[/tex]-components and then sum these components.
1. Identify the given forces and their angles:
- Force [tex]\( F_1 = 115 \, \text{N} \)[/tex] at an angle [tex]\( \theta_1 = 75.0^\circ \)[/tex]
- Force [tex]\( F_2 = 213 \, \text{N} \)[/tex] at an angle [tex]\( \theta_2 = 295^\circ \)[/tex]
2. Convert the angles from degrees to radians:
For calculations in trigonometry:
- [tex]\( \theta_1 \)[/tex] in radians is [tex]\( \theta_1 = 75.0 \times \frac{\pi}{180} \)[/tex]
- [tex]\( \theta_2 \)[/tex] in radians is [tex]\( \theta_2 = 295 \times \frac{\pi}{180} \)[/tex]
3. Calculate the [tex]\( x \)[/tex]-component for each force using the cosine function:
- For [tex]\( F_1 \)[/tex]:
[tex]\[ F_{1x} = F_1 \cos(\theta_1) \][/tex]
Plugging in the values:
[tex]\[ F_{1x} = 115 \cos(75.0^\circ) \approx 29.76 \, \text{N} \][/tex]
- For [tex]\( F_2 \)[/tex]:
[tex]\[ F_{2x} = F_2 \cos(\theta_2) \][/tex]
Plugging in the values:
[tex]\[ F_{2x} = 213 \cos(295^\circ) \approx 90.02 \, \text{N} \][/tex]
4. Sum the [tex]\( x \)[/tex]-components of both forces to get the total [tex]\( x \)[/tex]-component:
[tex]\[ F_{x_{\text{total}}} = F_{1x} + F_{2x} \][/tex]
Plugging in the calculated components:
[tex]\[ F_{x_{\text{total}}} = 29.76 \, \text{N} + 90.02 \, \text{N} \approx 119.78 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the total force acting on the block is approximately [tex]\( 119.78 \, \text{N} \)[/tex].
1. Identify the given forces and their angles:
- Force [tex]\( F_1 = 115 \, \text{N} \)[/tex] at an angle [tex]\( \theta_1 = 75.0^\circ \)[/tex]
- Force [tex]\( F_2 = 213 \, \text{N} \)[/tex] at an angle [tex]\( \theta_2 = 295^\circ \)[/tex]
2. Convert the angles from degrees to radians:
For calculations in trigonometry:
- [tex]\( \theta_1 \)[/tex] in radians is [tex]\( \theta_1 = 75.0 \times \frac{\pi}{180} \)[/tex]
- [tex]\( \theta_2 \)[/tex] in radians is [tex]\( \theta_2 = 295 \times \frac{\pi}{180} \)[/tex]
3. Calculate the [tex]\( x \)[/tex]-component for each force using the cosine function:
- For [tex]\( F_1 \)[/tex]:
[tex]\[ F_{1x} = F_1 \cos(\theta_1) \][/tex]
Plugging in the values:
[tex]\[ F_{1x} = 115 \cos(75.0^\circ) \approx 29.76 \, \text{N} \][/tex]
- For [tex]\( F_2 \)[/tex]:
[tex]\[ F_{2x} = F_2 \cos(\theta_2) \][/tex]
Plugging in the values:
[tex]\[ F_{2x} = 213 \cos(295^\circ) \approx 90.02 \, \text{N} \][/tex]
4. Sum the [tex]\( x \)[/tex]-components of both forces to get the total [tex]\( x \)[/tex]-component:
[tex]\[ F_{x_{\text{total}}} = F_{1x} + F_{2x} \][/tex]
Plugging in the calculated components:
[tex]\[ F_{x_{\text{total}}} = 29.76 \, \text{N} + 90.02 \, \text{N} \approx 119.78 \, \text{N} \][/tex]
Therefore, the [tex]\( x \)[/tex]-component of the total force acting on the block is approximately [tex]\( 119.78 \, \text{N} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.