Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify the given fraction [tex]\(\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}\)[/tex], we need to factor both the numerator and the denominator and then reduce the fraction by canceling out any common factors. Here is the step-by-step process:
1. Factor the denominator [tex]\(x^2 + 2x - 15\)[/tex]:
- We need to find two numbers that multiply to [tex]\(-15\)[/tex] (the constant term) and add up to [tex]\(2\)[/tex] (the coefficient of the linear term [tex]\(x\)[/tex]).
- These numbers are [tex]\(5\)[/tex] and [tex]\(-3\)[/tex], because [tex]\(5 \cdot (-3) = -15\)[/tex] and [tex]\(5 + (-3) = 2\)[/tex].
- Thus, we can factor the denominator as:
[tex]\[ x^2 + 2x - 15 = (x + 5)(x - 3) \][/tex]
2. Factor the numerator [tex]\(2x^2 + 9x - 5\)[/tex]:
- We need to find two numbers that multiply to [tex]\(2 \cdot (-5) = -10\)[/tex] and add up to [tex]\(9\)[/tex].
- These numbers are [tex]\(10\)[/tex] and [tex]\(-1\)[/tex], because [tex]\(10 \cdot (-1) = -10\)[/tex] and [tex]\(10 + (-1) = 9\)[/tex].
- We can then break up the middle term [tex]\(9x\)[/tex] into [tex]\(10x - x\)[/tex] to help in factoring by grouping:
[tex]\[ 2x^2 + 9x - 5 = 2x^2 + 10x - x - 5 \][/tex]
- Group the terms as follows:
[tex]\[ 2x(x + 5) - 1(x + 5) \][/tex]
- Factor out the common term [tex]\((x + 5)\)[/tex]:
[tex]\[ (2x - 1)(x + 5) \][/tex]
3. Write the fraction with the factored numerator and denominator:
[tex]\[ \frac{2x^2 + 9x - 5}{x^2 + 2x - 15} = \frac{(2x - 1)(x + 5)}{(x + 5)(x - 3)} \][/tex]
4. Cancel the common factors [tex]\(x + 5\)[/tex] in the numerator and denominator:
[tex]\[ \frac{(2x - 1)(x + 5)}{(x + 5)(x - 3)} = \frac{2x - 1}{x - 3} \][/tex]
Therefore, the simplified form of the fraction [tex]\(\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}\)[/tex] is:
[tex]\[ \frac{2x - 1}{x - 3} \][/tex]
1. Factor the denominator [tex]\(x^2 + 2x - 15\)[/tex]:
- We need to find two numbers that multiply to [tex]\(-15\)[/tex] (the constant term) and add up to [tex]\(2\)[/tex] (the coefficient of the linear term [tex]\(x\)[/tex]).
- These numbers are [tex]\(5\)[/tex] and [tex]\(-3\)[/tex], because [tex]\(5 \cdot (-3) = -15\)[/tex] and [tex]\(5 + (-3) = 2\)[/tex].
- Thus, we can factor the denominator as:
[tex]\[ x^2 + 2x - 15 = (x + 5)(x - 3) \][/tex]
2. Factor the numerator [tex]\(2x^2 + 9x - 5\)[/tex]:
- We need to find two numbers that multiply to [tex]\(2 \cdot (-5) = -10\)[/tex] and add up to [tex]\(9\)[/tex].
- These numbers are [tex]\(10\)[/tex] and [tex]\(-1\)[/tex], because [tex]\(10 \cdot (-1) = -10\)[/tex] and [tex]\(10 + (-1) = 9\)[/tex].
- We can then break up the middle term [tex]\(9x\)[/tex] into [tex]\(10x - x\)[/tex] to help in factoring by grouping:
[tex]\[ 2x^2 + 9x - 5 = 2x^2 + 10x - x - 5 \][/tex]
- Group the terms as follows:
[tex]\[ 2x(x + 5) - 1(x + 5) \][/tex]
- Factor out the common term [tex]\((x + 5)\)[/tex]:
[tex]\[ (2x - 1)(x + 5) \][/tex]
3. Write the fraction with the factored numerator and denominator:
[tex]\[ \frac{2x^2 + 9x - 5}{x^2 + 2x - 15} = \frac{(2x - 1)(x + 5)}{(x + 5)(x - 3)} \][/tex]
4. Cancel the common factors [tex]\(x + 5\)[/tex] in the numerator and denominator:
[tex]\[ \frac{(2x - 1)(x + 5)}{(x + 5)(x - 3)} = \frac{2x - 1}{x - 3} \][/tex]
Therefore, the simplified form of the fraction [tex]\(\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}\)[/tex] is:
[tex]\[ \frac{2x - 1}{x - 3} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.