Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equation that represents the approximate line of best fit for the given data, we'll use the least-squares regression method. The regression line can be represented by the equation [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the intercept.
Given the data points:
- Font Sizes ([tex]\( x \)[/tex]): 14, 12, 16, 10, 12, 14, 16, 18, 24, 22
- Word Counts ([tex]\( y \)[/tex]): 352, 461, 340, 407, 435, 381, 280, 201, 138, 114
After calculating the line of best fit using the least-squares method, we find the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]:
- The slope [tex]\( m \)[/tex] is approximately [tex]\( -26.059 \)[/tex]
- The intercept [tex]\( b \)[/tex] is approximately [tex]\( 722.633 \)[/tex]
Now, let us compare the given options with our calculated values:
1. [tex]\( y = -55x + 407 \)[/tex]
2. [tex]\( y = -41x + 814 \)[/tex]
3. [tex]\( y = -38x + 922 \)[/tex]
4. [tex]\( y = -26x + 723 \)[/tex]
The option that matches closest to our calculated line of best fit ([tex]\( y = -26.059x + 722.633 \)[/tex]) is clearly:
[tex]\( y = -26x + 723 \)[/tex]
Thus, the equation that best represents the approximate line of best fit for the data is:
[tex]\[ y = -26x + 723 \][/tex]
Given the data points:
- Font Sizes ([tex]\( x \)[/tex]): 14, 12, 16, 10, 12, 14, 16, 18, 24, 22
- Word Counts ([tex]\( y \)[/tex]): 352, 461, 340, 407, 435, 381, 280, 201, 138, 114
After calculating the line of best fit using the least-squares method, we find the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex]:
- The slope [tex]\( m \)[/tex] is approximately [tex]\( -26.059 \)[/tex]
- The intercept [tex]\( b \)[/tex] is approximately [tex]\( 722.633 \)[/tex]
Now, let us compare the given options with our calculated values:
1. [tex]\( y = -55x + 407 \)[/tex]
2. [tex]\( y = -41x + 814 \)[/tex]
3. [tex]\( y = -38x + 922 \)[/tex]
4. [tex]\( y = -26x + 723 \)[/tex]
The option that matches closest to our calculated line of best fit ([tex]\( y = -26.059x + 722.633 \)[/tex]) is clearly:
[tex]\( y = -26x + 723 \)[/tex]
Thus, the equation that best represents the approximate line of best fit for the data is:
[tex]\[ y = -26x + 723 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.