Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the minimum unit cost for manufacturing copy machines given the cost function [tex]\( C(x) = 0.8x^2 - 256x + 40,343 \)[/tex], we can follow these steps:
1. Understand the Cost Function:
The cost function is a quadratic equation of the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 0.8 \)[/tex], [tex]\( b = -256 \)[/tex], and [tex]\( c = 40,343 \)[/tex].
2. Identify the Vertex of the Parabola:
Since the coefficient of [tex]\( x^2 \)[/tex] (which is [tex]\( a = 0.8 \)[/tex]) is positive, the parabola opens upwards. The minimum value of the quadratic function occurs at the vertex of the parabola.
3. Calculate the x-value of the Vertex:
The x-coordinate of the vertex of a parabola given by [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = 0.8 \)[/tex] and [tex]\( b = -256 \)[/tex],
[tex]\[ x = -\frac{-256}{2 \times 0.8} = \frac{256}{1.6} = 160 \][/tex]
4. Calculate the Minimum Unit Cost:
Now, we substitute [tex]\( x = 160 \)[/tex] back into the original cost function [tex]\( C(x) \)[/tex] to find the minimum unit cost.
[tex]\[ C(160) = 0.8(160)^2 - 256(160) + 40,343 \][/tex]
First, calculate [tex]\( (160)^2 \)[/tex]:
[tex]\[ (160)^2 = 25,600 \][/tex]
Then,
[tex]\[ 0.8 \times 25,600 = 20,480 \][/tex]
And,
[tex]\[ 256 \times 160 = 40,960 \][/tex]
Therefore,
[tex]\[ C(160) = 20,480 - 40,960 + 40,343 \][/tex]
Simplifying,
[tex]\[ 20,480 - 40,960 = -20,480 \][/tex]
Adding 40,343,
[tex]\[ -20,480 + 40,343 = 19,863 \][/tex]
Therefore, the minimum unit cost [tex]\( S \)[/tex] is $19,853.
1. Understand the Cost Function:
The cost function is a quadratic equation of the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 0.8 \)[/tex], [tex]\( b = -256 \)[/tex], and [tex]\( c = 40,343 \)[/tex].
2. Identify the Vertex of the Parabola:
Since the coefficient of [tex]\( x^2 \)[/tex] (which is [tex]\( a = 0.8 \)[/tex]) is positive, the parabola opens upwards. The minimum value of the quadratic function occurs at the vertex of the parabola.
3. Calculate the x-value of the Vertex:
The x-coordinate of the vertex of a parabola given by [tex]\( ax^2 + bx + c \)[/tex] can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex].
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = 0.8 \)[/tex] and [tex]\( b = -256 \)[/tex],
[tex]\[ x = -\frac{-256}{2 \times 0.8} = \frac{256}{1.6} = 160 \][/tex]
4. Calculate the Minimum Unit Cost:
Now, we substitute [tex]\( x = 160 \)[/tex] back into the original cost function [tex]\( C(x) \)[/tex] to find the minimum unit cost.
[tex]\[ C(160) = 0.8(160)^2 - 256(160) + 40,343 \][/tex]
First, calculate [tex]\( (160)^2 \)[/tex]:
[tex]\[ (160)^2 = 25,600 \][/tex]
Then,
[tex]\[ 0.8 \times 25,600 = 20,480 \][/tex]
And,
[tex]\[ 256 \times 160 = 40,960 \][/tex]
Therefore,
[tex]\[ C(160) = 20,480 - 40,960 + 40,343 \][/tex]
Simplifying,
[tex]\[ 20,480 - 40,960 = -20,480 \][/tex]
Adding 40,343,
[tex]\[ -20,480 + 40,343 = 19,863 \][/tex]
Therefore, the minimum unit cost [tex]\( S \)[/tex] is $19,853.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.