Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to understand the properties of a 45-45-90 triangle. A 45-45-90 triangle is a special type of isosceles right triangle where the two legs are of equal length, and the hypotenuse is longer than either leg.
The key property of a 45-45-90 triangle is that the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as each of the legs. This can be derived from the Pythagorean Theorem. However, I will directly provide the property for simplicity.
Let's validate each option against this property:
### Option A: Each leg is [tex]\(\sqrt{2}\)[/tex] times as long as the hypotenuse.
- This statement is incorrect. Based on our knowledge of 45-45-90 triangles, each leg is not longer than the hypotenuse by a factor of [tex]\(\sqrt{2}\)[/tex]. Instead, the hypotenuse is longer than the legs by a factor of [tex]\(\sqrt{2}\)[/tex].
### Option B: The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
- This statement is correct. As discussed, the hypotenuse is indeed [tex]\(\sqrt{2}\)[/tex] times as long as either leg in a 45-45-90 triangle. If each leg has length [tex]\(x\)[/tex], the hypotenuse will be [tex]\(x\sqrt{2}\)[/tex].
### Option C: The hypotenuse is [tex]\(\sqrt{3}\)[/tex] times as long as either leg.
- This statement is incorrect. The ratio [tex]\(\sqrt{3}\)[/tex] applies to 30-60-90 triangles, not 45-45-90 triangles. Therefore, this relationship does not hold for 45-45-90 triangles.
### Option D: Each leg is [tex]\(\sqrt{3}\)[/tex] times as long as the hypotenuse.
- This statement is incorrect. Again, the [tex]\(\sqrt{3}\)[/tex] factor pertains to 30-60-90 triangles, not 45-45-90 triangles. The legs in a 45-45-90 triangle are not affected by [tex]\(\sqrt{3}\)[/tex].
Therefore, the true statement about a 45-45-90 triangle is:
B. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
The key property of a 45-45-90 triangle is that the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as each of the legs. This can be derived from the Pythagorean Theorem. However, I will directly provide the property for simplicity.
Let's validate each option against this property:
### Option A: Each leg is [tex]\(\sqrt{2}\)[/tex] times as long as the hypotenuse.
- This statement is incorrect. Based on our knowledge of 45-45-90 triangles, each leg is not longer than the hypotenuse by a factor of [tex]\(\sqrt{2}\)[/tex]. Instead, the hypotenuse is longer than the legs by a factor of [tex]\(\sqrt{2}\)[/tex].
### Option B: The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
- This statement is correct. As discussed, the hypotenuse is indeed [tex]\(\sqrt{2}\)[/tex] times as long as either leg in a 45-45-90 triangle. If each leg has length [tex]\(x\)[/tex], the hypotenuse will be [tex]\(x\sqrt{2}\)[/tex].
### Option C: The hypotenuse is [tex]\(\sqrt{3}\)[/tex] times as long as either leg.
- This statement is incorrect. The ratio [tex]\(\sqrt{3}\)[/tex] applies to 30-60-90 triangles, not 45-45-90 triangles. Therefore, this relationship does not hold for 45-45-90 triangles.
### Option D: Each leg is [tex]\(\sqrt{3}\)[/tex] times as long as the hypotenuse.
- This statement is incorrect. Again, the [tex]\(\sqrt{3}\)[/tex] factor pertains to 30-60-90 triangles, not 45-45-90 triangles. The legs in a 45-45-90 triangle are not affected by [tex]\(\sqrt{3}\)[/tex].
Therefore, the true statement about a 45-45-90 triangle is:
B. The hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as either leg.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.