At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the given statements is true for the functions [tex]\( f(x) = \log_2(2x) \)[/tex] and [tex]\( g(x) = 2^x - 3 \)[/tex], let's analyze the properties of these functions:
1. Behavior on the Interval [tex]\((-∞, 1)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x\ln(2)} \)[/tex].
- Evaluating the derivative at various points indicates the nature of increase or decrease.
- As [tex]\( x \to -∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( f'(1) = \frac{1}{\ln(2)} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex].
- As [tex]\( x \to -∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( g'(1) = 2 \ln(2) \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for these values, neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] decreases on the interval [tex]\((-∞, 1)\)[/tex].
2. Range:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The range is [tex]\( (-∞, ∞) \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The range is [tex]\( (-3, ∞) \)[/tex].
Since the ranges are different, both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same range of [tex]\( (-∞, 0] \)[/tex].
3. x-intercepts:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- Set [tex]\( \log_2(2x) = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \frac{1}{2} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- Set [tex]\( 2^x - 3 = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \log_2(3) \)[/tex].
The [tex]\( x \)[/tex]-intercepts do not coincide, so both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same [tex]\( x \)[/tex]-intercept of [tex]\((0,0)\)[/tex].
4. Behavior on the Interval [tex]\((0, ∞)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x \ln(2)} \)[/tex], which is positive for [tex]\( x > 0 \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex] from the positive side.
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex], which is positive for all [tex]\( x \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for [tex]\( x \in (0, ∞) \)[/tex], both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, ∞) \)[/tex].
The true statement is: Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, \infty) \)[/tex].
1. Behavior on the Interval [tex]\((-∞, 1)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x\ln(2)} \)[/tex].
- Evaluating the derivative at various points indicates the nature of increase or decrease.
- As [tex]\( x \to -∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( f'(1) = \frac{1}{\ln(2)} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex].
- As [tex]\( x \to -∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( 0 \)[/tex].
- At [tex]\( x = 1 \)[/tex], [tex]\( g'(1) = 2 \ln(2) \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for these values, neither [tex]\( f(x) \)[/tex] nor [tex]\( g(x) \)[/tex] decreases on the interval [tex]\((-∞, 1)\)[/tex].
2. Range:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The range is [tex]\( (-∞, ∞) \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The range is [tex]\( (-3, ∞) \)[/tex].
Since the ranges are different, both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same range of [tex]\( (-∞, 0] \)[/tex].
3. x-intercepts:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- Set [tex]\( \log_2(2x) = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \frac{1}{2} \)[/tex].
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- Set [tex]\( 2^x - 3 = 0 \)[/tex], solving for [tex]\( x \)[/tex] gives [tex]\( x = \log_2(3) \)[/tex].
The [tex]\( x \)[/tex]-intercepts do not coincide, so both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] do not have the same [tex]\( x \)[/tex]-intercept of [tex]\((0,0)\)[/tex].
4. Behavior on the Interval [tex]\((0, ∞)\)[/tex]:
- For [tex]\( f(x) = \log_2(2x) \)[/tex]:
- The derivative is [tex]\( f'(x) = \frac{1}{x \ln(2)} \)[/tex], which is positive for [tex]\( x > 0 \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( f'(x) \)[/tex] approaches [tex]\( 0 \)[/tex] from the positive side.
- For [tex]\( g(x) = 2^x - 3 \)[/tex]:
- The derivative is [tex]\( g'(x) = 2^x \ln(2) \)[/tex], which is positive for all [tex]\( x \)[/tex].
- As [tex]\( x \to ∞ \)[/tex], [tex]\( g'(x) \)[/tex] approaches [tex]\( \infty \)[/tex].
Since [tex]\( f'(x) > 0 \)[/tex] and [tex]\( g'(x) > 0 \)[/tex] for [tex]\( x \in (0, ∞) \)[/tex], both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, ∞) \)[/tex].
The true statement is: Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] increase on the interval [tex]\( (0, \infty) \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.