Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the range of the function [tex]\( f(x) = |x - 3| + 4 \)[/tex], let’s analyze it step-by-step.
1. Understanding the Absolute Value Function:
- The expression [tex]\( |x - 3| \)[/tex] represents the absolute value of [tex]\( x - 3 \)[/tex].
- The absolute value function [tex]\( |x - 3| \)[/tex] is always non-negative, meaning [tex]\( |x - 3| \geq 0 \)[/tex].
2. Adding 4 to the Absolute Value:
- Since [tex]\( |x - 3| \geq 0 \)[/tex], if we add 4 to this expression, we get:
[tex]\[ |x - 3| + 4 \geq 0 + 4 = 4 \][/tex]
3. Finding the Minimum Value:
- The lowest value that [tex]\( f(x) = |x - 3| + 4 \)[/tex] can take is when [tex]\( |x - 3| = 0 \)[/tex]. This occurs when [tex]\( x = 3 \)[/tex].
- Thus, when [tex]\( x = 3 \)[/tex], we have:
[tex]\[ f(3) = |3 - 3| + 4 = 0 + 4 = 4 \][/tex]
4. Considering all Possible Values:
- For any other [tex]\( x \neq 3 \)[/tex], since [tex]\( |x - 3| > 0 \)[/tex], we have [tex]\( |x - 3| + 4 > 4 \)[/tex].
- Therefore, for any [tex]\( x \in \mathbb{R} \)[/tex], the function [tex]\( f(x) \)[/tex] will always be greater than or equal to 4.
5. Conclusion:
- The range of [tex]\( f(x) = |x - 3| + 4 \)[/tex] includes all real numbers [tex]\( y \)[/tex] such that [tex]\( y \geq 4 \)[/tex].
Thus, the correct answer is:
[tex]\[ R: \{f(x) \in \mathbb{R} \mid f(x) \geq 4\} \][/tex]
1. Understanding the Absolute Value Function:
- The expression [tex]\( |x - 3| \)[/tex] represents the absolute value of [tex]\( x - 3 \)[/tex].
- The absolute value function [tex]\( |x - 3| \)[/tex] is always non-negative, meaning [tex]\( |x - 3| \geq 0 \)[/tex].
2. Adding 4 to the Absolute Value:
- Since [tex]\( |x - 3| \geq 0 \)[/tex], if we add 4 to this expression, we get:
[tex]\[ |x - 3| + 4 \geq 0 + 4 = 4 \][/tex]
3. Finding the Minimum Value:
- The lowest value that [tex]\( f(x) = |x - 3| + 4 \)[/tex] can take is when [tex]\( |x - 3| = 0 \)[/tex]. This occurs when [tex]\( x = 3 \)[/tex].
- Thus, when [tex]\( x = 3 \)[/tex], we have:
[tex]\[ f(3) = |3 - 3| + 4 = 0 + 4 = 4 \][/tex]
4. Considering all Possible Values:
- For any other [tex]\( x \neq 3 \)[/tex], since [tex]\( |x - 3| > 0 \)[/tex], we have [tex]\( |x - 3| + 4 > 4 \)[/tex].
- Therefore, for any [tex]\( x \in \mathbb{R} \)[/tex], the function [tex]\( f(x) \)[/tex] will always be greater than or equal to 4.
5. Conclusion:
- The range of [tex]\( f(x) = |x - 3| + 4 \)[/tex] includes all real numbers [tex]\( y \)[/tex] such that [tex]\( y \geq 4 \)[/tex].
Thus, the correct answer is:
[tex]\[ R: \{f(x) \in \mathbb{R} \mid f(x) \geq 4\} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.