Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the factor by which the dimensions of cylinder [tex]\(A\)[/tex] are multiplied to produce the corresponding dimensions of cylinder [tex]\(B\)[/tex], we need to understand and find the radii of the bases of both cylinders.
1. Find the radius of cylinder [tex]\(A\)[/tex]:
- We know the circumference of the base of cylinder [tex]\(A\)[/tex] is [tex]\(4\pi\)[/tex] units.
- The formula for the circumference [tex]\(C\)[/tex] of a circle is given by:
[tex]\[ C = 2\pi r \][/tex]
- Solving for the radius [tex]\(r\)[/tex]:
[tex]\[ 4\pi = 2\pi r \implies r = \frac{4\pi}{2\pi} = 2 \text{ units} \][/tex]
Thus, the radius of the base of cylinder [tex]\(A\)[/tex] is [tex]\(2\)[/tex] units.
2. Find the radius of cylinder [tex]\(B\)[/tex]:
- We know the area of the base of cylinder [tex]\(B\)[/tex] is [tex]\(9\pi\)[/tex] square units.
- The formula for the area [tex]\(A\)[/tex] of a circle is given by:
[tex]\[ A = \pi r^2 \][/tex]
- Solving for the radius [tex]\(r\)[/tex]:
[tex]\[ 9\pi = \pi r^2 \implies r^2 = 9 \implies r = \sqrt{9} = 3 \text{ units} \][/tex]
Thus, the radius of the base of cylinder [tex]\(B\)[/tex] is [tex]\(3\)[/tex] units.
3. Calculate the multiplication factor:
- To determine the factor by which the dimensions of cylinder [tex]\(A\)[/tex] are multiplied to produce cylinder [tex]\(B\)[/tex], we take the ratio of the radii of the two cylinders.
[tex]\[ \text{Factor} = \frac{\text{Radius of } B}{\text{Radius of } A} = \frac{3}{2} \][/tex]
Therefore, the dimensions of cylinder [tex]\(A\)[/tex] are multiplied by the factor [tex]\(\frac{3}{2}\)[/tex] to produce the dimensions of cylinder [tex]\(B\)[/tex].
So, the answer is [tex]\(\boxed{\frac{3}{2}}\)[/tex].
1. Find the radius of cylinder [tex]\(A\)[/tex]:
- We know the circumference of the base of cylinder [tex]\(A\)[/tex] is [tex]\(4\pi\)[/tex] units.
- The formula for the circumference [tex]\(C\)[/tex] of a circle is given by:
[tex]\[ C = 2\pi r \][/tex]
- Solving for the radius [tex]\(r\)[/tex]:
[tex]\[ 4\pi = 2\pi r \implies r = \frac{4\pi}{2\pi} = 2 \text{ units} \][/tex]
Thus, the radius of the base of cylinder [tex]\(A\)[/tex] is [tex]\(2\)[/tex] units.
2. Find the radius of cylinder [tex]\(B\)[/tex]:
- We know the area of the base of cylinder [tex]\(B\)[/tex] is [tex]\(9\pi\)[/tex] square units.
- The formula for the area [tex]\(A\)[/tex] of a circle is given by:
[tex]\[ A = \pi r^2 \][/tex]
- Solving for the radius [tex]\(r\)[/tex]:
[tex]\[ 9\pi = \pi r^2 \implies r^2 = 9 \implies r = \sqrt{9} = 3 \text{ units} \][/tex]
Thus, the radius of the base of cylinder [tex]\(B\)[/tex] is [tex]\(3\)[/tex] units.
3. Calculate the multiplication factor:
- To determine the factor by which the dimensions of cylinder [tex]\(A\)[/tex] are multiplied to produce cylinder [tex]\(B\)[/tex], we take the ratio of the radii of the two cylinders.
[tex]\[ \text{Factor} = \frac{\text{Radius of } B}{\text{Radius of } A} = \frac{3}{2} \][/tex]
Therefore, the dimensions of cylinder [tex]\(A\)[/tex] are multiplied by the factor [tex]\(\frac{3}{2}\)[/tex] to produce the dimensions of cylinder [tex]\(B\)[/tex].
So, the answer is [tex]\(\boxed{\frac{3}{2}}\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.